Obstructive sleep apnea (OSA) plays an important role in the development of hypertension. Thus, this review summarizes pharmacological and non-pharmacological approaches to blood pressure (BP) control in patients with OSA. Current treatments for OSA, such as continuous positive airway pressure, are effective at lowering BP. However, they only provide a modest BP reduction, and pharmacological treatment remains important for achieving optimal BP control. Furthermore, current guidelines for the treatment of hypertension do not make specific recommendations on pharmacological treatment protocols for controlling BP in patients with OSA. Moreover, the BP-lowering effects of various classes of antihypertensives may be different in hypertensive patients with OSA than in those without OSA due to the underlying mechanisms that promote hypertension in OSA. The acute and chronic increase in sympathetic nerve activity in patients with OSA explain the effectiveness of beta blockers in controlling BP in these patients. As activation of the renin-angiotensin-aldosterone system may also promote hypertension in OSA, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers have generally been found effective for lowering BP in hypertensive patients with OSA. The aldosterone antagonist spironolactone also produces a good antihypertensive response in patients with OSA and resistant hypertension. However, there are limited data available that compare the effects of various classes of antihypertensive medication on BP control in those with OSA, and most data have been obtained from small-scale studies. This demonstrates the need for large-scale randomized controlled trials to evaluate a range of BP-lowering regimens in patients with OSA and hypertension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976208 | PMC |
http://dx.doi.org/10.1016/j.ajpc.2023.100475 | DOI Listing |
J Cardiothorac Surg
January 2025
Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
Background: Continuous Positive Airway Pressure (CPAP) treatment brings more benefits than risks to most coronary heart disease (CHD) patients with obstructive sleep apnea (OSA). However, the pathophysiological mechanism by which CPAP treatment improves the prognosis of patients with CHD and OSA remains unclear. The purpose of this study was to clarify whether CPAP can improve arterial stiffness and inflammatory factor levels in CHD patients with OSA, and to further improve prognosis.
View Article and Find Full Text PDFSci Rep
January 2025
The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong, China.
Obstructive sleep apnea (OSA) often leads to complications in the elderly. This study compares the usefulness of five screening tools for OSA in elderly patients. Data from elderly patients diagnosed with OSA, collected from the Sleep Medicine Center of the First Affiliated Hospital of Guangzhou Medical University from January 2012 to June 2017, is analyzed.
View Article and Find Full Text PDFHeart Lung
January 2025
National Heart and Lung Institute, Imperial College London, London, United Kingdom. Electronic address:
Background: Obstructive sleep apnea (OSA) prevalence has risen significantly, affecting millions globally and posing a major healthcare burden. OSA is strongly associated with cardiovascular diseases (CVD) such as heart failure, stroke, and ischemic heart disease. However, trends in CVD-related mortality among individuals with OSA remain underexplored.
View Article and Find Full Text PDFJ Clin Sleep Med
January 2025
Fundación Neumológica Colombiana, Bogotá, Colombia.
Study Objectives: REM-associated OSA (REM OSA) has a prevalence of 17-74% of all OSA cases. At high altitude and in Latin America, there are no data on REM OSA and its relationship to daytime sleepiness and comorbidities. This study aimed to determine the prevalence of REM OSA and the differences in clinical and polysomnographic characteristics between OSA and REM OSA in a population living at 2640 m.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miller School of Medicine, Miami Florida.
Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!