In conventional water electrolysis (CWE), the H and O evolution reactions (HER/OER) are tightly coupled, making the generated H and O difficult to separate, thus resulting in complex separation technology and potential safety issues. Previous efforts on the design of decoupled water electrolysis mainly concentrated on multi-electrode or multi-cell configurations; however, these strategies have the limitation of involving complicated operations. Here, we propose and demonstrate a pH-universal, two-electrode capacitive decoupled water electrolyzer (referred to as all-pH-CDWE) in a single-cell configuration by utilizing a low-cost capacitive electrode and a bifunctional HER/OER electrode to separate H and O generation for decoupling water electrolysis. In the all-pH-CDWE, high-purity H and O generation alternately occur at the electrocatalytic gas electrode only by reversing the current polarity. The designed all-pH-CDWE can maintain a continuous round-trip water electrolysis for over 800 consecutive cycles with an electrolyte utilization ratio of nearly 100%. As compared to CWE, the all-pH-CDWE achieves energy efficiencies of 94% in acidic electrolytes and 97% in alkaline electrolytes at a current density of 5 mA cm. Further, the designed all-pH-CDWE can be scaled up to a capacity of 720 C in a high current of 1 A for each cycle with a stable HER average voltage of 0.99 V. This work provides a new strategy toward the mass production of H in a facilely rechargeable process with high efficiency, good robustness, and large-scale applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975835 | PMC |
http://dx.doi.org/10.1021/jacsau.2c00624 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!