Size Selective Ligand Tug of War Strategy to Separate Rare Earth Elements.

JACS Au

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Published: February 2023

Separating rare earth elements is a daunting task due to their similar properties. We report a "tug of war" strategy that employs a lipophilic and hydrophilic ligand with contrasting selectivity, resulting in a magnified separation of target rare earth elements. Specifically, a novel water-soluble bis-lactam-1,10-phenanthroline with an affinity for light lanthanides is coupled with oil-soluble diglycolamide that selectively binds heavy lanthanides. This two-ligand strategy yields a quantitative separation of the lightest (e.g., La-Nd) and heaviest (e.g., Ho-Lu) lanthanides, enabling efficient separation of neighboring lanthanides in-between (e.g., Sm-Dy).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976341PMC
http://dx.doi.org/10.1021/jacsau.2c00671DOI Listing

Publication Analysis

Top Keywords

rare earth
12
earth elements
12
size selective
4
selective ligand
4
ligand tug
4
tug war
4
war strategy
4
strategy separate
4
separate rare
4
elements separating
4

Similar Publications

Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.

Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.

View Article and Find Full Text PDF

Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites?

ACS Mater Au

January 2025

Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions.

View Article and Find Full Text PDF

A homoleptic rare-earth-metal tetramethylindate.

Chem Commun (Camb)

January 2025

Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.

The homoleptic complex La(InMe) is obtained from the respective aluminium congener La(AlMe) a donor-assisted tetramethylaluminate/tetramethylindate exchange protocol. Compound La(InMe) exhibits interesting thermal lability as well as distinct cluster formation like LaIn(C)(CH)(CH)(CH) and LaIn(CH)(CH) upon addition of an excess of donor or thermal treatment. The neutral potentially tridentate ligand MeTACN (1,4,7-trimethyl-1,4,7-triazacyclononane) is used to investigate donor-triggered intermediates.

View Article and Find Full Text PDF

Significantly promoting the lithium-ion transport performances of MOFs-based electrolytes a strategy of introducing fluoro groups in the crystal frameworks.

Chem Commun (Camb)

January 2025

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Metal-organic frameworks (MOFs) with well-ordered channels are considered ideal solid-state electrolytes (SSEs) for lithium ionic conductors and are expected to be utilized in all-solid-state Li-ion batteries. However, the outstanding Li conductivity of MOFs, especially the properties at low temperatures, has become a crucial problem to overcome. Herein, a breakthrough is first realized to cope with this challenge a strategy of introducing fluoro-substituted bridging ligands in MOFs.

View Article and Find Full Text PDF

Correction for 'Silver(I)-iodine cluster with efficient thermally activated delayed fluorescence and suppressed concentration quenching' by Xiao Li , , 2025, https://doi.org/10.1039/d4dt02855d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!