First-Principles Thermodynamics of CsSnI.

Chem Mater

Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015Lausanne, Switzerland.

Published: February 2023

CsSnI is a promising ecofriendly solution for energy harvesting technologies. It exists at room temperature in either a black perovskite polymorph or a yellow 1D double-chain, which irreversibly deteriorates in the air. In this work, we unveil the relative thermodynamic stability between the two structures with a first-principles sampling of the CsSnI finite-temperature phase diagram, discovering how it is driven by anomalously large quantum and anharmonic ionic fluctuations. Thanks to a comprehensive treatment of anharmonicity, the simulations deliver a remarkable agreement with known experimental data for the transition temperatures of the orthorhombic, rhombohedral, and cubic perovskite structures and the thermal expansion coefficient. We disclose how the perovskite polymorphs are the ground state above 270 K and discover an abnormal decrease in heat capacity upon heating in the cubic black perovskite. Our results also significantly downplay the Cs rattling modes' contribution to mechanical instability. The remarkable agreement with experiments validates our methodology, which can be systematically applied to all metal halides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979598PMC
http://dx.doi.org/10.1021/acs.chemmater.2c03475DOI Listing

Publication Analysis

Top Keywords

black perovskite
8
remarkable agreement
8
first-principles thermodynamics
4
thermodynamics cssni
4
cssni cssni
4
cssni promising
4
promising ecofriendly
4
ecofriendly solution
4
solution energy
4
energy harvesting
4

Similar Publications

All-inorganic lead halide perovskites (LHPs) and their use in optoelectronic devices have been widely explored because they are more thermally stable than their hybrid organic‒inorganic counterparts. However, the active perovskite phases of some inorganic LHPs are metastable at room temperature due to the critical structural tolerance factor. For example, black phase CsPbI is easily transformed back to the nonperovskite yellow phase at ambient temperature.

View Article and Find Full Text PDF

High-Efficiency (21.4%) Carbon Perovskite Solar Cells via Cathode Interface Engineering by using CuPc Hole-Transporting Layers.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Carbon perovskite solar cells (C-PSCs) represent a promising photovoltaic technology that addresses the long-term operating stability needed to compete with commercial Si solar cells. However, the poor interface contacts between the carbon electrode and the perovskite result in a gap between C-PSC's performances and state-of-the-art PSCs based on metallic back electrodes. In this work, Cu (II) phthalocyanine (CuPc) was rediscovered as an effective hole-transporting material (HTM) to be coupled with carbon electrodes.

View Article and Find Full Text PDF

Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells.

Nat Commun

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.

Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.

View Article and Find Full Text PDF
Article Synopsis
  • Halide perovskites, particularly tin halides, are gaining attention as thermoelectric materials due to their low thermal conductivity and good charge transport.
  • Partial substitution of Sn (II) with Ge (II) in CsSnGeI perovskite thin films enhances stability, keeping the material in the black orthorhombic phase after prolonged exposure to air.
  • Ge substitution significantly reduces lattice thermal conductivity and improves the understanding of phonon behavior in these mixed metal perovskites, contributing to their potential in thermoelectric applications.
View Article and Find Full Text PDF

Bismuth-based perovskite materials have attracted extensive attention due to their low toxicity and excellent optoelectronic properties. Herein, this investigation delves systematically into the influence of pressure on the structural stability, band gap evolution, and electrical transport properties of RbBiI. With the pressure increase, the band gap of the specimen gradually diminishes, attaining an optimal semiconductor band gap of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!