With the development of chronic kidney disease (CKD), there are various changes in metabolites. However, the effect of these metabolites on the etiology, progression and prognosis of CKD remains unclear. We aimed to identify significant metabolic pathways in CKD progression by screening metabolites through metabolic profiling, thus identifying potential targets for CKD treatment. Clinical data were collected from 145 CKD participants. GFR (mGFR) was measured by the iohexol method and participants were divided into four groups according to their mGFR. Untargeted metabolomics analysis was performed UPLC-MS/MSUPLC-MSMS/MS assays. Metabolomic data were analyzed by MetaboAnalyst 5.0, one-way ANOVA, principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) to identify differential metabolites for further analysis. The open database sources of MBRole2.0, including KEGG and HMDB, were used to identify significant metabolic pathways in CKD progression. Four metabolic pathways were classified as important in CKD progression, among which the most significant was caffeine metabolism. A total of 12 differential metabolites were enriched in caffeine metabolism, four of which decreased with the deterioration of the CKD stage, and two of which increased with the deterioration of the CKD stage. Of the four decreased metabolites, the most important was caffeine. Caffeine metabolism appears to be the most important pathway in the progression of CKD as identified by metabolic profiling. Caffeine is the most important metabolite that decreases with the deterioration of the CKD stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981652 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1006246 | DOI Listing |
Rapid Commun Mass Spectrom
March 2025
Department of Cardiology, Xinjiang Traditional Chinese Medicine Hospital, Xinjiang, China.
Biotechnol Adv
January 2025
Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China. Electronic address:
Gene circuits, which are genetically engineered systems designed to regulate gene expression, are emerging as powerful tools in disease theranostics, especially in mammalian cells. This review explores the latest advances in the design and application of gene circuits for detecting and treating various diseases. Synthetic gene circuits, inspired by electronic systems, offer precise control over therapeutic gene activity, allowing for real-time, user-defined responses to pathological signals.
View Article and Find Full Text PDFNutrients
December 2024
College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA.
Energy drinks are a commonly consumed beverage, and studies suggest a possible performance-enhancing effect. A Google Scholar search using the keywords "energy drinks" and "exercise" yields numerous results, underscoring the voluminous research on this topic. However, there are questions regarding the effectiveness and safety of energy drinks.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea.
Weightlifting demands explosive power and neuromuscular coordination in brief, repeated intervals. These physiological demands underscore the critical role of nutrition, not only in optimizing performance during competitions but also in supporting athletes' rigorous training adaptations and ensuring effective recovery between sessions. As weightlifters strive to enhance their performance, well-structured nutritional strategies are indispensable.
View Article and Find Full Text PDFMolecules
January 2025
Department of Experimental Dermatology and Cosmetology, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.
Caffeine has recently attracted attention as a potential remedy for hair loss. In the present review, we look into the molecule's possible mechanisms of action and pharmacodynamics. At the molecular level, it appears that the physiological effects of caffeine are mainly due to the molecule's interaction with adenosine pathways which leads to an increase in cAMP level and the stimulation of metabolic activity in the hair follicle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!