Venoms from tarantulas contain low molecular weight vasodilatory compounds whose biological action is conceived as part of the envenomation strategy due to its propagative effects. However, some properties of venom-induced vasodilation do not match those described by such compounds, suggesting that other toxins may cooperate with these ones to produce the observed biological effect. Owing to the distribution and function of voltage-gated ion channels in blood vessels, disulfide-rich peptides isolated from venoms of tarantulas could be conceived into potential vasodilatory compounds. However, only two peptides isolated from spider venoms have been investigated so far. This study describes for the first time a subfraction containing inhibitor cystine knot peptides, PrFr-I, obtained from the venom of the tarantula . This subfraction induced sustained vasodilation in rat aortic rings independent of vascular endothelium and endothelial ion channels. Furthermore, PrFr-I decreased calcium-induced contraction of rat aortic segments and reduced extracellular calcium influx to chromaffin cells by the blockade of L-type voltage-gated calcium channels. This mechanism was unrelated to the activation of potassium channels from vascular smooth muscle, since vasodilation was not affected in the presence of TEA, and PrFr-I did not modify the conductance of the voltage-gated potassium channel K10.1. This work proposes a new envenomating function of peptides from venoms of tarantulas, and establishes a new mechanism for venom-induced vasodilation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978846PMC
http://dx.doi.org/10.1016/j.toxcx.2023.100151DOI Listing

Publication Analysis

Top Keywords

venoms tarantulas
12
venom tarantula
8
inhibitor cystine
8
cystine knot
8
knot peptides
8
l-type voltage-gated
8
voltage-gated calcium
8
calcium channels
8
vasodilatory compounds
8
venom-induced vasodilation
8

Similar Publications

Due to their position on glomerular capillaries, podocytes are continuously counteracting biomechanical filtration forces. Most therapeutic interventions known to generally slow or prevent the progression of chronic kidney disease appear to lower these biomechanical forces on podocytes, highlighting the critical need to better understand podocyte mechano-signalling pathways. Here we investigated whether the mechanotransducer Piezo is involved in a mechanosensation pathway in Drosophila nephrocytes, the podocyte homologue in the fly.

View Article and Find Full Text PDF

Interstitial pH fluctuations occur normally in the brain and significantly modulate neuronal functions. Acid-sensing ion channels (ASICs), which serve as neuronal acid chemosensors, play important roles in synaptic plasticity, learning, and memory. However, the specific mechanisms by which ASICs influence neurotransmission remain elusive.

View Article and Find Full Text PDF

Voltage-gated sodium channels (Nas) selectively permit diffusion of sodium ions across the cell membrane and, in excitable cells, are responsible for propagating action potentials. One of the nine human Na isoforms, Na1.8, is a promising target for analgesics, and selective inhibitors are of interest as therapeutics.

View Article and Find Full Text PDF

ω-Grammotoxin-SIA inhibits voltage-gated Na+ channel currents.

J Gen Physiol

October 2024

Department of Basic and Applied Medical Sciences, Molecular Physiology and Neurophysics Group, Ghent University, Ghent, Belgium.

ω-Grammotoxin-SIA (GrTX-SIA) was originally isolated from the venom of the Chilean rose tarantula and demonstrated to function as a gating modifier of voltage-gated Ca2+ (CaV) channels. Later experiments revealed that GrTX-SIA could also inhibit voltage-gated K+ (KV) channel currents via a similar mechanism of action that involved binding to a conserved S3-S4 region in the voltage-sensing domains (VSDs). Since voltage-gated Na+ (NaV) channels contain homologous structural motifs, we hypothesized that GrTX-SIA could inhibit members of this ion channel family as well.

View Article and Find Full Text PDF

Poecilotheria spiders are considered theraphosids of underestimated clinical importance, with bites from these species inducing symptoms such as severe pain and intense muscle cramps. However, there is no specific treatment for the envenomation caused by these species, which, while native to India and Sri Lanka, are widely distributed worldwide. The present study reports the case of a 31-year-old man bitten by a Poecilotheria regalis specimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!