A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increasing the Strain Resistance of Si/SiO Interfaces for Flexible Electronics. | LitMetric

Increasing the Strain Resistance of Si/SiO Interfaces for Flexible Electronics.

ACS Omega

Institut für Funktionelle Grenzflächen, Karlsruher Institut für Technologie, Hermann-von Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Deutschland.

Published: February 2023

Understanding the changes that occur in the micro-mechanical properties of semiconductor materials is of utmost importance for the design of new flexible electronic devices, especially to control the properties of newly designed materials. In this work, we present the design, fabrication, and application of a novel tensile-testing device coupled to FTIR measurements that enables in situ atomic investigations of samples under uniaxial tensile load. The device allows for mechanical studies of rectangular samples with dimensions of 30 mm × 10 mm × 0.5 mm. By recording the alternation in dipole moments, the investigation of fracture mechanisms becomes feasible. Our results show that thermally treated SiO on silicon wafers has a higher strain resistance and breaking force than the SiO native oxide. The FTIR spectra of the samples during the unloading step indicate that for the native oxide sample, the fracture happened following the propagation of cracks from the surface into the silicon wafer. On the contrary, for the thermally treated samples, the crack growth starts from the deepest region of the oxide and propagates along the interface due to the change in the interface properties and redistribution of the applied stress. Finally, density functional theory calculations of model surfaces were conducted in order to unravel the differences in optic and electronic properties of the interfaces with and without applied stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979357PMC
http://dx.doi.org/10.1021/acsomega.2c06869DOI Listing

Publication Analysis

Top Keywords

strain resistance
8
thermally treated
8
native oxide
8
applied stress
8
increasing strain
4
resistance si/sio
4
si/sio interfaces
4
interfaces flexible
4
flexible electronics
4
electronics understanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!