Transmittance in porous-glass gas sensors, which use aldol condensation of vanillin and nonanal as the detection mechanism for nonanal, decreases because of the production of carbonates by the sodium hydroxide catalyst. In this study, the reasons for the decrease in transmittance and the measures to overcome this issue were investigated. Alkali-resistant porous glass with nanoscale porosity and light transparency was employed as a reaction field in a nonanal gas sensor using ammonia-catalyzed aldol condensation. In this sensor, the gas detection mechanism involves measuring the changes in light absorption of vanillin arising from aldol condensation with nonanal. Furthermore, the problem of carbonate precipitation was solved with the use of ammonia as the catalyst, which effectively resolves the issue of reduced transmittance that occurs when a strong base, such as sodium hydroxide, is used as a catalyst. Additionally, the alkali-resistant glass exhibited solid acidity because of the incorporated SiO and ZrO additives, which supported approximately 50 times more ammonia on the glass surface for a longer duration than a conventional sensor. Moreover, the detection limit obtained from multiple measurements was approximately 0.66 ppm. In summary, the developed sensor exhibits a high sensitivity to minute changes in the absorbance spectrum because of the reduction in the baseline noise of the matrix transmittance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979322 | PMC |
http://dx.doi.org/10.1021/acsomega.2c07622 | DOI Listing |
Molecules
January 2025
Institute for Organic Synthesis and Photoreactivity of the Italian National Research Council, Area della Ricerca di Bologna, Via P. Gobetti, 101, 40129 Bologna, Italy.
The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
Cancer remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for novel therapeutic agents. This study investigated the synthesis and biological evaluation of -alkyl ()-chalcone derivatives (-) as potential anticancer agents. The compounds were synthesized via aldol condensation of substituted aldehydes and acetophenones, with structures confirmed by IR, NMR, and mass spectrometry.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Hydrazides are known to catalyze reactions of α,β-unsaturated aldehydes via transient iminium formation. The iminium intermediate displays enhanced electrophilicity, which facilitates conjugate additions and cycloadditions. We observed that a hydrazide embedded in a seven-membered ring catalyzes homoaldol condensation of a simple aldehyde in a process that displays an approximate second-order dependence on the hydrazide.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
Biophysics Institute, CNR-IBF, Via Corti 12, I-20133, Milano, Italy; Department of Bioscience, University of Milan, Via Celoria 26, I-20133, Milano, Italy. Electronic address:
Aldolases are crucial enzymes that catalyze the formation of carbon-carbon bonds in the context of the anabolic and catabolic pathways of various metabolites. The bacterium Pseudomonas fluorescens N3 can use naphthalene as its sole carbon and energy source by using, among other enzymes, the trans-o-hydroxybenzylidenepyruvate (tHBP) hydratase-aldolase (HA), encoded by the nahE gene. In this study, we present the crystallographic structures of tHBP-HA in three different functional states: the apo enzyme with a phosphate ion in the active site, and the Schiff base adduct bound either to pyruvate or to the substitute with '(R)-4-hydroxy-4-(2-hydroxyphenyl)-2-oxobutanoate'(intermediate state).
View Article and Find Full Text PDFMini Rev Med Chem
January 2025
Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia.
Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!