The highly transmittable nature of SARS-CoV-2 has increased the necessity for novel strategies to safely decontaminate public areas. This study investigates the efficacy of a low irradiance 405-nm light environmental decontamination system for the inactivation of bacteriophage phi6 as a surrogate for SARS-CoV-2. Bacteriophage phi6 was exposed to increasing doses of low irradiance (~0.5 mW cm ) 405-nm light while suspended in SM buffer and artificial human saliva at low (~10 PFU mL ) and high (~10 PFU mL ) seeding densities, to determine system efficacy for SARS-CoV-2 inactivation and establish the influence of biologically relevant suspension media on viral susceptibility. Complete/near-complete (≥99.4%) inactivation was demonstrated in all cases, with significantly enhanced reductions observed in biologically relevant media (P < 0.05). Doses of 43.2 and 172.8 J cm were required to achieve ~3 log reductions at low density, and 97.2 and 259.2 J cm achieved ~6 log reductions at high density, in saliva and SM buffer, respectively: 2.6-4 times less dose was required when suspended in saliva compared to SM buffer. Comparative exposure to higher irradiance (~50 mW cm ) 405-nm light indicated that, on a per unit dose basis, 0.5 mW cm treatments were capable of achieving up to 5.8 greater log reductions with up to 28-fold greater germicidal efficiency than that of 50 mW cm treatments. These findings establish the efficacy of low irradiance 405-nm light systems for inactivation of a SARS-CoV-2 surrogate and demonstrate the significant enhancement in susceptibility when suspended in saliva, which is a major vector in COVID-19 transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952546 | PMC |
http://dx.doi.org/10.1111/php.13798 | DOI Listing |
Photochem Photobiol
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
Virus-laden aerosols play a substantial role in the spread of numerous infectious diseases, particularly in enclosed indoor settings. Ultraviolet-C (UVC) disinfection is known to be a highly efficient method for disinfecting pathogenic airborne viruses. Recent recommendations suggest using far-UVC radiation (222 nm) emitted by KrCl* (krypton-chloride) excimer lamps to disinfect high-risk public spaces due to lower exposure risks than low-pressure (LP) mercury lamps (254 nm).
View Article and Find Full Text PDFFood Environ Virol
December 2024
Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St, Rzeszow, 35-601, Poland.
The aim of the present study was to compare the antioxidant, antibacterial and antiviral activities of Podkarpackie coniferous honeydew honey and Manuka honey. The quality of tested honey samples (honeydew-12 and Manuka-4) regarding honey standard was evaluated as well as additional indicators (methylglyoxal, total phenolics and HPTLC phenolic profile, antioxidant potential, glucose oxidase activity, and hydrogen peroxide) were compared. Antibacterial potential was analyzed against Gram-positive (S.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA.
Bacterial plant pathogens pv. , pv. , pv.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
CREM Co. Labs., Mississauga, Ontario, Canada.
An air sanitizer was evaluated using an aerobiology protocol, compliant with the U.S. Environmental Protection Agency's Air Sanitizer Guidelines, for virucidal activity against bacteriophages Phi6 and MS2 (used as surrogates for enveloped and non-enveloped human pathogenic viruses).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!