Cyclic pentapeptides with anti-inflammatory, cytotoxic or α-glucosidase inhibitory activities from Basidiobolus meristosporus.

Phytochemistry

Engineering Research Center of Fungal Biotechnology, Ministry of Education; Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, 230036, China. Electronic address:

Published: May 2023

Basidiobolus meristosporus is an opportunistic pathogen of mammals with unique habitats, but its metabolites have not been extensively studied. Through semi-preparative HPLC, nine undescribed cyclic pentapeptides were isolated from mycelia of B. meristosporus RCEF4516. The structure of the compounds 1-9 were identified with MS/MS and NMR data and designated as basidiosin D-L respectively. The absolute configurations were determined according to the advanced Marfey's method after compound hydrolysis. Bioactivity testing showed that compounds 1, 2, 3, 4 and 8 decreased NO production in LPS-activated RAW264.7 cells in a concentration-dependent manner. The nine compounds showed cytotoxicity against RAW264.7, 293 T and HepG2 cells. All the compounds except compound 7 showed stronger inhibitory effects on α-glucosidase than acarbose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2023.113636DOI Listing

Publication Analysis

Top Keywords

cyclic pentapeptides
8
basidiobolus meristosporus
8
pentapeptides anti-inflammatory
4
anti-inflammatory cytotoxic
4
cytotoxic α-glucosidase
4
α-glucosidase inhibitory
4
inhibitory activities
4
activities basidiobolus
4
meristosporus basidiobolus
4
meristosporus opportunistic
4

Similar Publications

The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, , , and ([Ru(Phphen) Ac-XRGDX-NH)]Cl with Phphen = 4,7-diphenyl-1,10-phenanthroline and X, X = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X bonds.

View Article and Find Full Text PDF

Peptide self-assembly is a complex hierarchical process involving the progressive formation of secondary structures, such as α-helices, β-sheets, and turns, during the early stages. It is precisely these multi-component building blocks that contribute to the complexity of protein assemblies in living organisms. While coiled coils are well-understood in protein folding, determining the structural characteristics governing their lateral packing remains challenging.

View Article and Find Full Text PDF

Cyclopeptide Avellanins D-O with Antimalarial Activity from the Mariana Trench Anemone-Derived MSC5.

J Nat Prod

December 2024

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.

Article Synopsis
  • * Researchers used advanced techniques including MALDI-TOF MS, NMR, and LC-MS/MS to analyze a fungus (MSC5) from the Mariana Trench, leading to the discovery of 12 new cyclic pentapeptides known as avellanins D-O and one known compound, avellanin C.
  • * The structure of these compounds was determined through several analytical methods, and one of them showed strong antimalarial activity with an IC value of 0.19 ± 0.09 μM, highlighting its potential for medicinal use.
View Article and Find Full Text PDF
Article Synopsis
  • - The study examined the chemical diversity of the SWUF15-40 fungus grown in a yeast-malt extract medium, shifting from the previous PDB medium using the OSMACs strategy, which resulted in discovering numerous bioactive compounds.
  • - Detailed analysis using IR, NMR, MS, and XRD techniques led to the identification of two new isopimarane derivatives, three guaiane derivatives, and four known compounds.
  • - A cyclic pentapeptide from the fungus showed promising anti-cancer activity against several cell lines and inhibited nitric oxide production, indicating that adjusting growth conditions can enhance the discovery of bioactive compounds in fungi.
View Article and Find Full Text PDF

A metal-organic nanoframework for efficient colorectal cancer immunotherapy by the cGAS-STING pathway activation and immune checkpoint blockade.

J Nanobiotechnology

September 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, the First Clinical College & the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Immunotherapy has shown marked progress in promoting systemic anti-colorectal cancer (CRC) clinical effects. For further effectively sensitizing CRC to immunotherapy, we have engineered a pH-sensitive zeolitic imidazolate framework-8 (CS/NPs), capable of efficient cGAS-STING pathway activation and immune checkpoint blockade, by encapsulating the chemotherapeutic mitoxantrone (MTX) and immunomodulator thymus pentapeptide (TP5) and tailoring with tumor-targeting chondroitin sulfate (CS). In this nanoframework, CS endows CS/NPs with specific tumor-targeting activity and reduced systemic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!