Total organic carbon (TOC) analysis with accurate determination of particulate organic carbon (POC) content in suspended solids (SS) containing water is critical for evaluating the environmental impact of particulate organic pollutants in water and calculating the carbon cycle mass balance. TOC analysis is divided into the non-purgeable organic carbon (NPOC) and differential (known as TC-TIC) methods; although the selection of method is greatly affected by the sample matrix characteristics of SS, no studies have investigated this. This study quantitatively evaluates the effect of SS containing inorganic carbon (IC) and purgeable organic carbon (PuOC), as well as that of sample pretreatment, on the accuracy and precision of TOC measurement in both methods for various environmental water sample types (12 wastewater influents and effluents and 12 types of stream water). For influent and stream water with high SS, the TC-TIC method expressed 110-200 % higher TOC recovery than that for the NPOC method due to POC component losses in SS owing to its conversion into PuOC during sample pretreatment (using ultrasonic) and subsequent loss in the NPOC purging process. Correlation analysis confirmed that particulated organic matter (POM, mg/L) content in SS directly affected this difference (r > 0.74, p < 0.01, n = 24); for POC water samples (those containing >10 mg/L of POM) featuring purgeable dissolved organic matter, TC-TIC was appropriate in securing TOC measurement accuracy. In constrast, in effluent and stream water with low SS (i.e., < ∼5 mg/L) and high IC (> 70 %) contents, the TOC measurement ratios (TC-TIC/NPOC) of both methods were similar, between 0.96 and 1.08, suggesting that NPOC is appropriate for improving precision. Our results provide useful basic data to establish the most reliable TOC analysis method considering SS contents and its properties along with the matrix characteristics of the sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162530DOI Listing

Publication Analysis

Top Keywords

organic carbon
16
toc analysis
12
toc measurement
12
stream water
12
toc
8
water sample
8
particulate organic
8
matrix characteristics
8
sample pretreatment
8
organic matter
8

Similar Publications

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Tailoring the Porous Structure of Carbon for Enhanced Oxidative Cleavage and Esterification of C(CO)-C Bonds.

ChemSusChem

December 2024

National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.

The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.

View Article and Find Full Text PDF

Rational design of redox active metal organic frameworks for mediated electron transfer of enzymes.

Mater Horiz

January 2025

Department of Material Sciences, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-5358, Japan.

The efficient immobilization of redox mediators remains a major challenge in the design of mediated enzyme electrode platforms. In addition to stability, the ability of the redox-active material to mediate electron transfer from the active-site buried enzymes, such as flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) and lactate oxidase (LOx), is also crucial. Conventional immobilization techniques can be synthetically challenging, and immobilized mediators often exhibit limited durability, particularly in continuous operation.

View Article and Find Full Text PDF

Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.

View Article and Find Full Text PDF

Inorganic-organic hybrid nanoparticles with carbonate-triggered emission-colour-shift.

Dalton Trans

January 2025

Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.

(Eu[PTC])(Eu[TREN-1,2-HOPO]) inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!