Recycling of Au(III) from wastewater can not only increase resource utilization but also reduce environmental pollution. Herein, a chitosan-based bio-adsorbent (DCTS-TA) was successfully synthesized via crosslinking reaction between tannin (TA) and dialdehyde chitosan (DCTS) for the recovery of Au(III) from the solution. The maximum adsorption capacity for Au(III) was 1146.59 mg/g at pH 3.0, which fitted well with the Langmuir model. The XRD, XPS, and SEM-EDS analyses demonstrated that Au(III) adsorption on DCTS-TA was a collaborative process involving electrostatic interaction, chelation, and redox reaction. Existence of multiple coexisting metal ions did not significantly affect the Au(III) adsorption efficiency, with >90 % recovery of DCTS-TA obtained after five cycles. DCTS-TA is a promising candidate for Au(III) recovery from aqueous solutions due to its easy preparation, environmental-friendliness, and high efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.123919 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!