Background & Aims: Microscopic inflammation has significant prognostic value in ulcerative colitis (UC); however, its assessment is complex with high interobserver variability. We aimed to develop and validate an artificial intelligence (AI) computer-aided diagnosis system to evaluate UC biopsies and predict prognosis.
Methods: A total of 535 digitalized biopsies (273 patients) were graded according to the PICaSSO Histologic Remission Index (PHRI), Robarts, and Nancy Histological Index. A convolutional neural network classifier was trained to distinguish remission from activity on a subset of 118 biopsies, calibrated on 42 and tested on 375. The model was additionally tested to predict the corresponding endoscopic assessment and occurrence of flares at 12 months. The system output was compared with human assessment. Diagnostic performance was reported as sensitivity, specificity, prognostic prediction through Kaplan-Meier, and hazard ratios of flares between active and remission groups. We externally validated the model in 154 biopsies (58 patients) with similar characteristics but more histologically active patients.
Results: The system distinguished histological activity/remission with sensitivity and specificity of 89% and 85% (PHRI), 94% and 76% (Robarts Histological Index), and 89% and 79% (Nancy Histological Index). The model predicted the corresponding endoscopic remission/activity with 79% and 82% accuracy for UC endoscopic index of severity and Paddington International virtual ChromoendoScopy ScOre, respectively. The hazard ratio for disease flare-up between histological activity/remission groups according to pathologist-assessed PHRI was 3.56, and 4.64 for AI-assessed PHRI. Both histology and outcome prediction were confirmed in the external validation cohort.
Conclusion: We developed and validated an AI model that distinguishes histologic remission/activity in biopsies of UC and predicts flare-ups. This can expedite, standardize, and enhance histologic assessment in practice and trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2023.02.031 | DOI Listing |
J Chem Inf Model
January 2025
School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.
Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Importance: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-corrected VA without technician costs, reduce visit time, or facilitate home monitoring of VA from fundus images obtained outside of the clinic.
Objective: To estimate spectacle-corrected VA measured on a standard eye chart among patients with diabetic macular edema (DME) in clinical practice settings using previously validated AI algorithms evaluating best-corrected VA from fundus photographs in eyes with DME.
Ophthalmol Ther
January 2025
International Health Policy Program (IHPP), Ministry of Public Health, Nonthaburi, Thailand.
Introduction: Screening diabetic retinopathy (DR) for timely management can reduce global blindness. Many existing DR screening programs worldwide are non-digital, standalone, and deployed with grading retinal photographs by trained personnel. To integrate the screening programs, with or without artificial intelligence (AI), into hospital information systems to improve their effectiveness, the non-digital workflow must be transformed into digital.
View Article and Find Full Text PDFWorld J Urol
January 2025
Department of Urology, Renmin Hospital of Wuhan University, 99 Zhang Zhi-dong Road, Wuhan, Hubei, 430060, P.R. China.
Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.
Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!