Roles of various enzymes in the biotransformation of 6:2 fluorotelomer alcohol (6:2 FTOH) by a white-rot fungus.

J Hazard Mater

Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States. Electronic address:

Published: May 2023

Six-carbon-chained polyfluoroalkyl substances, such as 6:2 fluorotelomer alcohol (6:2 FTOH), are being used to replace longer chained compounds in the manufacture of various commercial products. This study examined the effects of growth substrates and nutrients on specific intracellular and extracellular enzymes mediating 6:2 FTOH aerobic biotransformation by the white-rot fungus, Phanerochaete chrysosporium. Cellulolytic conditions with limited glucose were a suitable composition, resulting in high 5:3 FTCA yield (37 mol%), which is a key intermediate in 6:2 FTOH degradation without forming significant amounts of terminal perfluorocarboxylic acids (PFCAs). Sulfate and ethylenediaminetetraacetic acid (EDTA) were also essential for 5:3 FTCA production, but, at lower levels, resulted in the buildup of 5:2 sFTOH (52 mol%) and 6:2 FTUCA (20 mol%), respectively. In non-ligninolytic nutrient-rich medium, 45 mol% 6:2 FTOH was transformed but produced only 12.7 mol% 5:3 FTCA. Enzyme activity studies imply that cellulolytic conditions induce the intracellular cytochrome P450 system. In contrast, extracellular peroxidase synthesis is independent of 6:2 FTOH exposure. Gene expression studies further verified that peroxidases were relevant in catalyzing the downstream transformations from 5:3 FTCA. Collectively, the identification of nutrients and enzymatic systems will help elucidate underlying mechanisms and biogeochemical conditions favorable for fungal transformation of PFCA precursors in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131007DOI Listing

Publication Analysis

Top Keywords

fluorotelomer alcohol
8
alcohol ftoh
8
white-rot fungus
8
cellulolytic conditions
8
ftoh
6
roles enzymes
4
enzymes biotransformation
4
biotransformation fluorotelomer
4
ftoh white-rot
4
fungus six-carbon-chained
4

Similar Publications

Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics.

J Hazard Mater

January 2025

School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China. Electronic address:

Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) release from textiles is a source of human exposure, but the mechanisms behind this release remain insufficiently studied. This research investigates the release and transport mechanisms of PFAS in outdoor jacket fabrics treated with a short side-chain fluorinated polymers (CF-SFPs) for durable water repellency (DWR). PA-based and PET-based fabrics were exposed to outdoor conditions and subjected to accelerated aging, followed by abrasion, washing, and drying experiments to simulate wear and degradation.

View Article and Find Full Text PDF

Embryonic exposure to 6:2 fluorotelomer alcohol mediates autism spectrum disorder-like behavior by dysfunctional microbe-gut-brain axis in mice.

J Hazard Mater

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China. Electronic address:

6:2 fluorotelomer alcohol (6:2 FTOH) is considered an emerging contaminant as a substitute for perfluoroalkyl and polyfluoroalkyl substances. Autism spectrum disorder (ASD) is a highly heterogeneous childhood neurodevelopmental disorder, the prevalence of which has been significantly increasing globally, possibly due to rising exposure to environmental pollutants. Additionally, the microbe-gut-brain axis plays a crucial role in the development of ASD.

View Article and Find Full Text PDF

Per- and polyfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that bioaccumulate in tissues and pose risks to human health. Increasing evidence links PFAS to neurodegenerative and behavioral disorders, yet the underlying mechanisms of their effects on neuronal function remain largely unexplored. In this study, we utilized SH-SY5Y neuroblastoma cells, differentiated into neuronal-like cells, to investigate the impact of six PFAS compounds─perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorodecanesulfonic acid (PFDS), 8:2 fluorotelomer sulfonate (8:2 FTS), and 8:2 fluorotelomer alcohol (8:2 FTOH)─on neuronal health.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers detected 36 types of PFAS in the surface snow of the Arctic island of Spitsbergen during 2019, indicating widespread contamination, especially from local sources with some levels up to 54 times higher in populated areas.
  • * The study found that seasonal changes in sunlight significantly affect the formation and deposition of certain PFAS, suggesting that photochemical processes are key in the Arctic atmosphere's pollution dynamics.
View Article and Find Full Text PDF

Release of Volatile Per- and Polyfluoroalkyl Substances from Plant Fiber-Based Food Packaging and Municipal Solid Waste to Gas under Simulated Landfill Conditions.

Environ Sci Technol

December 2024

Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, North Carolina 27695-7908, United States.

Per- and polyfluoroalkyl substances (PFAS) have been detected in plant fiber-based food packaging and most such packaging is disposed in landfills. The objective of this research was to evaluate the release of volatile PFAS to the gas-phase from PFAS-containing, single-use food packaging materials and from municipal solid waste (MSW) during anaerobic decomposition under simulated landfill conditions. After screening 46 materials for total and 6:2 fluorotelomer alcohol (FTOH), packaging materials were classified as high or low .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!