Objectives: The efficacy of electroconvulsive therapy (ECT) in treating mood disorders (MDs) is hypothesized to be mediated by the induction of neurotrophic factors (denoted "angioneurins") that trigger neuronal plasticity. This study aimed to assess the effects of ECT on serum angioneurin levels in patients with MD.
Methods: A total of 110 patients with MDs including 30 with unipolar depression, 25 with bipolar depression (BD), 55 with bipolar mania (BM), and 50 healthy controls were included in the study. Patients were subdivided into two groups: those who received ECT + medication (12 ECT sessions) and those who received only medication (no-ECT). Depressive and manic symptom assessments and measurements of vascular endothelial growth factor (VEGF), fibroblast growth factor-2, nerve growth factor (NGF), and insulin-like growth factor-1 levels in blood samples were performed at baseline and week 8.
Results: Patients in the ECT group, specifically those with BD and BM, had significantly increased levels of VEGF compared to their baseline VEGF levels (p = 0.002). No significant changes in angioneurin levels were observed in the no-ECT group. Serum NGF levels were significantly associated with a reduction in depressive symptoms. Angioneurin levels were not associated with manic symptom reduction.
Conclusions: This study hints that ECT may increase VEGF levels with angiogenic mechanisms that amplify NGF signaling to promote neurogenesis. It may also contribute to changes in brain function and emotional regulation. However, further animal experiments and clinical validation are needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bdi.13317 | DOI Listing |
Bipolar Disord
December 2023
Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China.
Objectives: The efficacy of electroconvulsive therapy (ECT) in treating mood disorders (MDs) is hypothesized to be mediated by the induction of neurotrophic factors (denoted "angioneurins") that trigger neuronal plasticity. This study aimed to assess the effects of ECT on serum angioneurin levels in patients with MD.
Methods: A total of 110 patients with MDs including 30 with unipolar depression, 25 with bipolar depression (BD), 55 with bipolar mania (BM), and 50 healthy controls were included in the study.
Aging Dis
June 2022
1Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
Blood brain barrier (BBB) injury is an important factor affecting the prognosis of ischemic stroke. Extensive research on BBB injury has revealed that blood vessels and neural networks are interdependent and interrelated during and after the development of the brain. An array of signaling molecules, known as angioneurins, can affect both blood vessels and neural networks simultaneously.
View Article and Find Full Text PDFJ Alzheimers Dis
June 2019
Ever NeuroPharma, Unterach, Austria.
Vascular endothelial growth factor (VEGF) is an angioneurin involved in the regulation of vascular and neural functions relevant for the pathophysiology of Alzheimer's disease (AD), but the influence of AD severity and ApoE4 status on circulating VEGF and its relationship with cognition has not been investigated. We assessed serum VEGF levels and cognitive performance in AD, amnestic mild cognitive impairment (MCI), and control subjects. VEGF levels were higher in AD patients than in MCI cases and controls (p < 0.
View Article and Find Full Text PDFJ Biomed Sci
August 2016
Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Background: Development of neural and vascular systems displays astonishing similarities among vertebrates. This parallelism is under a precise control of complex guidance signals and neurovascular interactions. Previously, our group identified a highly conserved neural protein called thrombospondin type I domain containing 7A (THSD7A).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!