Organic carbon accumulation and aggregate formation in soils under organic and inorganic fertilizer management practices in a rice-wheat cropping system.

Sci Rep

State Experimental Station of Agro-Ecosystem in Fengqiu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.

Published: March 2023

Soil organic carbon (C) and aggregates are the important components of soil fertility and the foundation of sustainable agriculture. The storage and protection of SOC in aggregates is widely regarded as the material basis of soil organic C accumulation. However, current understanding of soil aggregate and its associated organic C is insufficient to elucidate the regulation mechanism of soil organic C. A nine-year field experiment including chemical fertilizer (FR) and organic manure (OM) treatments was set up in the eastern plain of Funiu Mountain, central China. Using chemical analysis, physical sieving as well as nuclear magnetic resonance (NMR) methods, we mainly probed into the response of soil organic C concentration and composition, and C functional groups, water-stable aggregates to different treatments. Furthermore, scanning electronic microscopy (SEM) and partial least square structural equation modelling (PLS-SEM) was conducted to characterise the different size aggregates and to analyse the mechanism of soil organic C accumulation and stabilisation at aggregate scales. After nine years of farming, OM treatment substantially increased soil organic C content (by 3.77 g kg) and significantly enhanced the formation of macro-aggregates (> 250 μm), while FR had no significant influence on soil organic C. At the aggregate scale, the amounts of soil organic C, C physical fractions (particulate and mineral-associated organic C), total nitrogen and microbial biomass carbon associated in macro-aggregates (> 250 μm) were obviously higher than that in micro-aggregates and silt + clay fraction, and OM treatment greatly increased the accumulation of soil organic C and its components in macro-aggregates. Moreover, microbial biomass carbon (MBC) amounts in aggregates were remarkably increased (27-116%) by the application of OM. And MBC had a positively effect on the physical fractions of SOC but not on the C chemical structure within aggregates. The present study indicated that soil organic C accumulation mainly rely on macro-aggregates (> 250 μm). Intra-particulate organic carbon (POC) and mineral-associated organic carbon (MOC) within macro-aggregates played an important role in soil organic C accumulation. Meanwhile, soil microbes were a driving force for the accumulation of soil organic C physical fractions (POC and MOC). We concluded that OM treatment accelerated the synergistic process between organic C sequestration and soil aggregation, and showed great potential to increase soil organic C accumulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985631PMC
http://dx.doi.org/10.1038/s41598-023-30541-yDOI Listing

Publication Analysis

Top Keywords

soil organic
52
organic
21
organic accumulation
20
soil
17
organic carbon
16
macro-aggregates > 250 μm
12
physical fractions
12
accumulation soil
12
accumulation
8
mechanism soil
8

Similar Publications

To achieve good agricultural practices and maximize the economic yield of corn, farmers should reduce the use of inorganic fertilizers. A field experiment was conducted in the Chonnabot district, Khon Kaen province, Thailand, during the 2022 and 2023 growing seasons. The aim was to assess the impact of different organic fertilizers and their combinations on the growth and yield of commercial sweet corn ( L.

View Article and Find Full Text PDF

Intestinal flow and digestive parameters of Lutzomyia longipalpis larvae.

J Insect Physiol

January 2025

Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil. Electronic address:

Lutzomyia longipalpis Lutz & Neiva, 1912 (Diptera, Psychodidae), is the primary vector of Leishmania infantum Nicole, 1908, the etiological agent of American visceral leishmaniasis. During their development, sandfly larvae pass through four instars, consuming soil particles enriched with microorganisms and decomposing organic material. In numerous insect species, the intestinal epithelium not only secretes digestive enzymes and absorbs digested nutrients but also carries out additional functions, such as regulating luminal pH and facilitating the absorption or secretion of ions and water.

View Article and Find Full Text PDF

Soil nitrogen deficiency aggravated the aging of biodegradable microplastics in paddy soil under the input of organic substances with contrasting C/N ratios.

J Hazard Mater

January 2025

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. Electronic address:

The application of organic substances to the agricultural field has effectively enhanced soil nutrient levels and crop yields. Biodegradable microplastics (bio-MPs), a pervasive emerging contaminant, may potentially impact the soil ecosystem through their aging process. Here, a 150-day dark incubation experiment was conducted to elucidate the disparities in the aging process of polylactic acid bio-MPs (PLA-MPs) in soils with contrasting C/N ratios of organic substances, as the mechanisms underlying this process remain unclear.

View Article and Find Full Text PDF

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

Significant variation in mercury (Hg) bioaccumulation is observed across the diversity of freshwater ecosystems in North America. While there is support for the major drivers of Hg bioaccumulation, the relative influence of different external factors can vary widely among waterbodies, which makes predicting Hg risk across large spatial scales particularly challenging. We modeled Hg bioaccumulation by coupling Hg concentrations in more than 21,000 dragonflies collected across the United States from 2008 to 2021 with a suite of chemical (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!