Seaweed biomass has been proposed as a promising alternative carbon source for fermentation processes using microbial factories. However, the high salinity content of seaweed biomass is a limiting factor in large scale fermentation processes. To address this shortcoming, three bacterial species (Pediococcus pentosaceus, Lactobacillus plantarum, and Enterococcus faecium) were isolated from seaweed biomass and evolved to increasing concentrations of NaCl. Following the evolution period, P. pentosaceus reached a plateau at the initial NaCl concentration, whereas L. plantarum, and E. faecium showed a 1.29 and 1.75-fold increase in their salt tolerance, respectively. The impact that salt evolution had on lactic acid production using hypersaline seaweed hydrolysate was investigated. Salinity evolved L. plantarum produced 1.18-fold more lactic acid than the wild type, and salinity evolved E. faecium was able to produce lactic acid, while the wild type could not. No differences in lactic acid production were observed between the P. pentosaceus salinity evolved and wild type strains. Evolved lineages were analyzed for the molecular mechanisms underlying the observed phenotypes. Mutations were observed in genes affecting the ion balance in the cell, the composition of the cell membrane and proteins acting as regulators. This study demonstrates that bacterial isolates from saline niches are promising microbial factories for the fermentation of saline substrates, without the requirement of previous desalination steps, while preserving high final product yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2023.03.001 | DOI Listing |
Technol Cancer Res Treat
December 2024
Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
Objectives: This study developed a drug delivery system (DDS) using folic acid (FA)-functionalized chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanocarriers for targeted sodium butyrate (NB) delivery to leukemia cells (NALM6). The goal was to enhance NB's therapeutic efficacy while reducing its cytotoxicity to non-malignant cells.
Methods: FA-CS-PLGA nanocarriers were synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).
J Cosmet Dermatol
December 2024
Magacho Institute for Health Education, Fortaleza, Ceará, Brazil.
Background: A recent study highlighted variability in complication rates among polylactic acid (PLA)-based collagen stimulator fillers, with notably high rate of complications linked to PLLA-Elleva. The study suggested that product-specific characteristics might have greater impact on outcomes than injection techniques.
Methods/results: Through a critical analysis of pertinent literature, this commentary explores how PLLA-Elleva's unique physicochemical properties, particularly its bimodal degradation process, may contribute to the increased nodule formation observed.
Infect Disord Drug Targets
December 2024
Depart-ment of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Biosurfactants are naturally occurring compounds with various ap-plications, biodegradable, non-toxic, and effective in different conditions. This study fo-cuses on the extraction and evaluation of biosurfactants produced by five strains of lactic acid bacteria [LAB] for their potential to inhibit biofilm formation and adhesion by Strep-tococcus mutans.
Methods: The strains of LAB-producing biosurfactants such as Lactobacillus salivarius, L.
Biotechnol Biofuels Bioprod
December 2024
Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan.
Background: Currently, efficient technologies producing useful chemicals from alternative carbon resources, such as methanol, to replace petroleum are in demand. The methanol-utilizing yeast, Komagataella phaffii, is a promising microorganism to produce chemicals from methanol using environment-friendly microbial processes. In this study, to achieve efficient D-lactic acid production from methanol, we investigated a combination of D-lactate dehydrogenase (D-LDH) genes and promoters in K.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands.
Tuberculosis (TB) remains a significant global health challenge, latently affecting around a quarter of the global population. The sole licensed TB vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), shows variable efficacy, particularly among adolescents and adults, underscoring the pressing need for more effective vaccination strategies. The administration route is crucial for vaccine efficacy, and administration via the skin, being rich in immune cells, may offer advantages over conventional subcutaneous routes, which lack direct access to abundant antigen-presenting cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!