Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein hydrogels have attracted increasing attention because of their excellent biodegradability and biocompatibility, but frequently suffer from the single structures and functions. As a combination of luminescent materials and biomaterials, multifunctional protein luminescent hydrogels can exhibit wider applications in various fields. Herein, we report a novel, multicolor tunable, injectable, and biodegradable protein-based lanthanide luminescent hydrogel. In this work, urea was utilized to denature BSA to expose disulfide bonds, and tris(2-carboxyethyl)phosphine (TCEP) was employed to break the disulfide bonds in BSA to generate free thiols. A part of free thiols in BSA rearranged into disulfide bonds to form a crosslinked network. In addition, lanthanide complexes (Ln(4-VDPA)), containing multiple active reaction sites, could react with the remaining thiols in BSA to form the second crosslinked network. The whole process avoids the use of nonenvironmentally friendly photoinitiators and free radical initiators. The rheological properties and structure of hydrogels were investigated, and the luminescent performances of hydrogels were studied in detail. Finally, the injectability and biodegradability of hydrogels were verified. This work will provide a feasible strategy for the design and fabrication of multifunctional protein luminescent hydrogels, which may have further applications in biomedicine, optoelectronics, and information technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.123865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!