Insect morphogen decapentaplegic (Dpp) functions as one of the key extracellular ligands of the Bone Morphogenetic Protein (BMP) signaling pathway. Previous studies in insects mainly focused on the roles of Dpp during embryonic development and the formation of adult wings. In this study, we demonstrate a new role for Dpp in retarding lipolysis during metamorphosis in both Bombyx mori and Drosophila melanogaster. CRISPR/Cas9-mediated mutation of Bombyx dpp causes pupal lethality, induces an excessive and premature breakdown of lipids in the fat body, and upregulates the expressions of several lipolytic enzyme genes, including brummer (bmm), lipase 3 (lip3), and hormone-sensitive lipase (hsl), and lipid storage droplet 1 (lsd1), a lipid droplets (LD)-associated protein gene. Further investigation in Drosophila reveals that salivary gland-specific knockdown of the dpp gene and fat body-specific knockdown of Mad involved in Dpp signaling phenocopy the effects of Bombyx dpp mutation on pupal development and lipolysis. Taken together, our data indicate that the Dpp-mediated BMP signaling in the fat body maintains lipid homeostasis by retarding lipolysis, which is necessary for pupa-adult transition during insect metamorphosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ibmb.2023.103928 | DOI Listing |
Nat Commun
January 2025
The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Arch Insect Biochem Physiol
July 2024
Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan.
Perilipins are evolutionarily conserved from insects to mammals. Drosophila lipid storage droplet-1 (LSD-1) is a lipid storage droplet membrane surface-binding protein family member and a counterpart to mammalian perilipin 1 and is known to play a role in lipolysis. However, the function of LSD-1 during specific tissue development remains under investigation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, LA 70112.
The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid β-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in . Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis.
View Article and Find Full Text PDFInsect Biochem Mol Biol
April 2023
State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China. Electronic address:
Insect morphogen decapentaplegic (Dpp) functions as one of the key extracellular ligands of the Bone Morphogenetic Protein (BMP) signaling pathway. Previous studies in insects mainly focused on the roles of Dpp during embryonic development and the formation of adult wings. In this study, we demonstrate a new role for Dpp in retarding lipolysis during metamorphosis in both Bombyx mori and Drosophila melanogaster.
View Article and Find Full Text PDFInt J Mol Sci
January 2023
College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.
Lipophagy plays an important role in regulating lipid metabolism in mammals. The exact function of autophagy-related protein 2 (Atg2) has been investigated in mammals, but research on the existence and functions of Atg2 in (AmAtg2) is still limited. Here, autophagy occurred in honeybee pupae, which targeted lipid droplets (LDs) in fat body, namely lipophagy, which was verified by co-localization of LDs with microtubule-associated protein 1A/1B light chain 3 beta (LC3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!