Despite growing concerns about pollinator declines, evidence that this is a widespread problem affecting entire communities remains limited. There is a particular shortage of pollinator time series from relatively undisturbed natural habitats, such as forests, which are generally thought to provide refuge to biodiversity from anthropogenic stressors. Here, we present the results from standardized pollinator sampling over 15 years (2007-2022) at three relatively undisturbed forested locations in the southeastern United States. We observed significant declines in the richness (39%) and abundance (62.5%) of bees as well as the abundance of butterflies (57.6%) over this time period. Unexpectedly, we detected much stronger declines in the richness and abundance of above-ground-nesting bees (81.1% and 85.3%, respectively) compared with below-ground-nesting bees. Even after dropping the first or last year of sampling, which happened to yield the greatest and lowest numbers of pollinators, respectively, we still detected many of the same negative trends. Our results suggest that sharp declines in pollinators may not be limited to areas experiencing direct anthropogenic disturbances. Possible drivers in our system include increasing mean annual minimum temperatures near our study sites as well as an invasive wood-nesting ant that has become increasingly widespread and abundant in the region over the course of this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2023.02.030 | DOI Listing |
Sci Rep
January 2025
Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Berlin, Germany.
Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.
View Article and Find Full Text PDFMicroorganisms
December 2024
Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
In aquatic benthic environments, benthic organisms have been found to regulate important biogeochemical characteristics and perform key ecosystem functions. To further explore the ecological impact of the snail 's, presence on the benthic environment, we employed high-throughput sequencing technology to investigate its effects on the bacterial, fungal, and protist communities in sediment and their intrinsic interactions. Our findings revealed that 's presence significantly enhanced the diversity and evenness of the fungal community while simultaneously decreasing the diversity and richness of the protist community, and it also altered the composition and relative abundance of the dominant phyla across the bacterial, fungal, and protist communities.
View Article and Find Full Text PDFInsects
December 2024
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy.
Human-driven changes in land cover and use can significantly impact species ants community structures, often leading to a decline in taxonomic diversity or species homogenization. Ant morphology, used as a proxy for ecological function, offers a valuable framework for understanding the effects of anthropogenic disturbances on ant diversity. This study explored the morphological diversity of ant assemblages in agricultural ecosystems and secondary forests in Italy and the Brazilian Amazon, analyzing how these communities are structured and adapted to different environments.
View Article and Find Full Text PDFInsects
November 2024
Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
Agricultural intensification has led to significant declines in beneficial insect populations, such as pollinators and natural enemies, along with their ecosystem services. The installation of perennial flower margins in farmland is a popular agri-environmental scheme to mitigate these losses, promoting biodiversity, pollination, and pest control. However, outcomes can vary widely, and recent insights into flower margins in an agricultural context suggest that management could be an important contributor to this variation.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology and Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!