Structural N-glycoproteomics characterization of cell-surface N-glycosylation of MCF-7/ADR cancer stem cells.

J Chromatogr B Analyt Technol Biomed Life Sci

School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China. Electronic address:

Published: March 2023

Breast cancer is responsible for the highest mortality all over the world. Cancer stem cells (CSCs) along with epithelial mesenchymal transition (EMT) are identified as a driver of cancer which are responsible for cancer metastasis and drug resistance. Several signaling pathways are associated with drug resistance. Additionally, glycosyltransferases regulate different types of glycosylation which are involved in drug resistance. To the end, it is urgent to figure out the knowledge on cell-surface altered N-glycosylation and putative markers. Here, differential cell-surface intact N-glycopeptides in adriamycin (ADR)-resistant michigan breast cancer foundation-7 stem cells (MCF-7/ADR CSCs) relative to ADR-sensitive MCF-7 CSCs were analyzed with site- and structure-specific quantitative N-glycoproteomics. The intact N-glycopeptides and differentially expressed intact N-glycopeptides (DEGPs) were determined and quantified via intact N-glycopeptide search engine GPSeeker. Totally, 4777 intact N-glycopeptides were identified and N-glycan sequence structures among 2764 IDs were distinguished from their isomers by structure-diagnostic fragment ions. Among 1717 quantified intact N-glycopeptides, 104 DEGPs were determined (fold change ≥ 1.5 and p value < 0.05). Annotation of protein-protein interaction and biological processes among others of DEGPs were finally carried out; down-regulated intact N-glycopeptide with bisecting GlcNAc from p38-interacting protein and up-regulated intact N-glycopeptide with β1,6-branching N-glycan from integrin beta-5 were found.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2023.123647DOI Listing

Publication Analysis

Top Keywords

intact n-glycopeptides
20
stem cells
12
drug resistance
12
cancer stem
8
breast cancer
8
cancer responsible
8
degps determined
8
quantified intact
8
cancer
6
intact
6

Similar Publications

Glycosylation is an important posttranslational modification in platelets, and the glycosylation pattern is critical for platelet function. To date, the exploration of the roles of various glycoforms in specific platelet functions is largely lacking. In this study, a global analysis of intact N-glycopeptides in human platelets was performed to map all the glycopeptides, glycosites and glycans of platelets.

View Article and Find Full Text PDF

Smart-responsive materials have attracted much attention in the enrichment of post-translational modifications of proteins. In this work, for the first time, we developed a smart enrichment strategy (MNPs-l-DOPA/PEI-SP) based on the change in hydrophilic properties of spiropyran under the regulation of light and pH to realize the controllable enrichment and release of intact glycopeptides. The enrichment mechanism and possible binding mechanism were verified by theoretical calculations.

View Article and Find Full Text PDF

In-depth site-specific glycoproteomic analysis reveals ER-resident protein PDI regulating wheat yellow mosaic virus infection.

Int J Biol Macromol

December 2024

Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China. Electronic address:

N-glycosylation is crucial in the process of wheat yellow mosaic virus (WYMV) infection, but changes in site-specific N-glycosylation of proteins during WYMV infection have not been well studied. In this study, we employed an intact glycopeptide approach to analyze mock- and WYMV-infected wheat plants. We found that most glycoproteins have N-glycans containing paucimannose or complex/hybrid chains.

View Article and Find Full Text PDF

Comprehensive site- and structure-specific profiling of N-glycosylation of edible bird's nest (EBN) proteome using label-free quantitative glycoproteomics.

Food Chem

December 2024

Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China. Electronic address:

Glycoproteins, which are involved in numerous biological functions, are among the most critical functional ingredients in an edible bird's nest (EBN). To gain a comprehensive understanding of the glycoprotein species within EBN, a label-free, site-specific glycoproteomic approach was used to analyze their N-glycoproteins, N-glycopeptides, and N-glycans systematically. A total of 127 N-glycoproteins were identified in EBN, of which 72 were found in house-EBN and 63 in cave-EBN, yielding 4195 and 5649 glycopeptides, respectively.

View Article and Find Full Text PDF

Advances in the development of N-glycopeptide enrichment materials based on hydrophilic interaction chromatography.

Anal Bioanal Chem

December 2024

XJTLU Wisdom Lake Academy of Pharmacy-BEAVER Biomedical Joint Laboratory, Suzhou, 215123, China.

Protein glycosylation is one of the most important post-translational modifications, implicated in the development of various diseases, including neurodegenerative diseases, diabetes, and cancers. However, the low content of glycoproteins in biological samples, the diversity and heterogeneity of glycan structures, and insensitive detection methods make glycosylation analysis challenging. As a result, efficient enrichment of glycopeptides from complex samples is a critical step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!