A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linear: a framework to enable existing software to resolve structural variants in long reads with flexible and efficient alignment-free statistical models. | LitMetric

AI Article Synopsis

  • This text talks about a method called "alignment," which is important for studying long strands of DNA and finding changes in their structure.
  • There are problems with the existing methods, like them being slow and not able to easily include new types of DNA changes.
  • A new tool named "Linear" was created to solve these issues without needing alignment, and it turned out to be much faster and better at detecting these DNA changes than the old methods.

Article Abstract

Alignment is the cornerstone of many long-read pipelines and plays an essential role in resolving structural variants (SVs). However, forced alignments of SVs embedded in long reads, inflexibility of integrating novel SVs models and computational inefficiency remain problems. Here, we investigate the feasibility of resolving long-read SVs with alignment-free algorithms. We ask: (1) Is it possible to resolve long-read SVs with alignment-free approaches? and (2) Does it provide an advantage over existing approaches? To this end, we implemented the framework named Linear, which can flexibly integrate alignment-free algorithms such as the generative model for long-read SV detection. Furthermore, Linear addresses the problem of compatibility of alignment-free approaches with existing software. It takes as input long reads and outputs standardized results existing software can directly process. We conducted large-scale assessments in this work and the results show that the sensitivity, and flexibility of Linear outperform alignment-based pipelines. Moreover, the computational efficiency is orders of magnitude faster.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbad071DOI Listing

Publication Analysis

Top Keywords

existing software
12
long reads
12
structural variants
8
long-read svs
8
svs alignment-free
8
alignment-free algorithms
8
alignment-free
5
svs
5
linear
4
linear framework
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!