Background: Genebanks worldwide are transforming into biodigital resource centers, providing access not only to the plant material itself but also to its phenotypic and genotypic information. Adding information for relevant traits will help boost plant genetic resources' usage in breeding and research. Resistance traits are vital for adapting our agricultural systems to future challenges.
Findings: Here we provide phenotypic data for the resistance against Blumeria graminis f. sp. tritici, the causal agent of wheat powdery mildew-a substantial risk to our agricultural production. Using a modern high-throughput phenotyping system, we infected and photographed a total of 113,638 wheat leaves of 7,320 winter wheat (Triticum aestivum L.) plant genetic resources of the German Federal ex situ Genebank for Agricultural and Horticultural Crops and 154 commercial genotypes. We quantified the resistance reaction captured by images and provide them here, along with the raw images.
Conclusion: This massive amount of phenotypic data, combined with already published genotypic data, also provides a valuable and unique training dataset for the development of novel genotype-based predictions as well as mapping methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984986 | PMC |
http://dx.doi.org/10.1093/gigascience/giad007 | DOI Listing |
Plant Dis
January 2025
USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;
Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.
View Article and Find Full Text PDFPlant Methods
January 2025
Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079, Göttingen, Germany.
Sci Rep
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.
Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.
View Article and Find Full Text PDFViruses
January 2025
Department of Plant Pathology, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS 66506, USA.
Wheat viruses are major yield-reducing factors, with mixed infections causing substantial economic losses. Determining field virus populations is crucial for effective management and developing virus-resistant cultivars. This study utilized the high-throughput Oxford Nanopore sequencing technique (ONT) to characterize wheat viral populations in major wheat-growing counties of Kansas from 2019 to 2021.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!