A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fibrous food and particle size influence electromyography and the kinematics of oral processing. | LitMetric

Fibrous food and particle size influence electromyography and the kinematics of oral processing.

Food Res Int

Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 25, 70599 Stuttgart, Germany. Electronic address:

Published: March 2023

Structure-sensory relationships are essential for understanding food perception. Food microstructure impacts how a food is comminuted and processed by the human masticatory system. This study investigated the impact of anisotropic structures, explicitly the structure of meat fibers, on the dynamic process of mastication. For a general understanding of texture-structure relationships, the three typically used deformation-tests: Kramer shear cell-, Guillotine cutting- and texture-profile-analyses were conducted. 3D jaw movements and muscle activities of the masseter muscle were additionally tracked and visualized using a mathematical model. Particle size had a significant effect on jaw movements and muscle activities for both the homogeneous (isotropic) and fibrous (anisotropic) meat-based samples with the same composition. Mastication was described using jaw movement and muscle activity parameters determined for each individual chew. The adjusted effect of fiber length was extracted from the data, suggesting that longer fibers induce a more strenuous chewing in which the jaw undergoes faster and wider movements requiring more muscle activity. To the authors' knowledge, this paper presents a novel data analysis approach for identifying oral processing behavior differences. This is an advancement on previous studies because a holistic overview of the entire mastication process can be visualized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.112564DOI Listing

Publication Analysis

Top Keywords

particle size
8
oral processing
8
jaw movements
8
movements muscle
8
muscle activities
8
muscle activity
8
muscle
5
fibrous food
4
food particle
4
size influence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!