Background: Granulosa cell tumors (GCT) are rare malignant ovarian tumors. The two subtypes, adult and juvenile granulosa cell tumors, differ in clinical and molecular characteristics. GCT are low-malignant tumors and are generally associated with favorable prognosis. However, relapses are common even years and decades after diagnosis. Prognostic and predictive factors are difficult to assess in this rare tumor entity. The purpose of this review is to provide a comprehensive overview of the current state of knowledge on prognostic markers of GCT to identify patients with a high risk of recurrence.

Methods: Systematic research for adult ovarian granulosa cell tumors and prognosis revealed n = 409 English full text results from 1965 to 2021. Of these articles, n = 35 were considered for this review after title and abstract screening and topic-specific matching. A specific search for pathologic markers with prognostic relevance for GCT identified n = 19 articles that were added to this review.

Results: FOXL2 mutation and FOXL2 mRNA were inverse and immunohistochemical (IHC) expression of CD56, GATA-4 and SMAD3 was associated with reduced prognosis. IHC analysis of estrogen receptor, Anti-Mullerian hormone (AMH) and inhibin was not associated with prognosis for GCT. Analyses of mitotic rate, Ki-67, p53, β-catenin and HER2 revealed inconsistent results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983179PMC
http://dx.doi.org/10.1186/s13048-023-01125-1DOI Listing

Publication Analysis

Top Keywords

granulosa cell
16
cell tumors
16
tumors
6
prognosis
5
gct
5
immunohistochemical markers
4
markers prognosis
4
prognosis adult
4
granulosa
4
adult granulosa
4

Similar Publications

Tribbles homolog 2 (TRIB2), a pseudoserine/threonine kinase, is a member of the TRIB family. TRIB2 primarily regulates cell proliferation through its scaffold or adaptor effect on promoting the degradation of target proteins by E3 ligase-dependent ubiquitination and regulating mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) signaling pathways. TRIB2 is not only involved in the physiological proliferation of cells (granulosa cells, myoblasts, naive T cells, and thymocytes) during normal development but also in the pathological proliferation of vascular smooth muscle cells and a variety of cancer cells (lung cancer cells, liver cancer cells, leukemia cells, pancreatic cancer cells, gastric cancer cells, prostate cancer cells, thyroid cancer cells, cervical cancer cells, melanoma cells, colorectal cancer cells, ovarian cancer cells and osteosarcoma cells) under disease conditions.

View Article and Find Full Text PDF

Study Question: Is elevated plasma molybdenum level associated with increased risk for idiopathic premature ovarian insufficiency (POI)?

Summary Answer: Elevated plasma molybdenum level is associated with an increased risk of idiopathic POI through vascular endothelial injury and inhibition of granulosa cell proliferation.

What Is Known Already: Excessive molybdenum exposure has been associated with ovarian oxidative stress in animals but its role in the development of POI remains unknown.

Study Design, Size, Duration: Case-control study of 30 women with idiopathic POI and 31 controls enrolled from August 2018 to May 2019.

View Article and Find Full Text PDF

Introduction: Identifying non-invasive biomarkers which can predict the outcome of intracytoplasmic sperm injection (ICSI) is crucial, particularly in Germany where the challenges are intensified by the Embryo Protection Act. Recent research has highlighted biomarkers within the epidermal growth factor (EGF) family as central to follicular processes, although their predictive utility remains a subject of debate in the literature. Therefore, the primary objective of this study was to investigate the significance of amphiregulin concentrations in follicular fluid and gene expression in mural granulosa cells on oocyte maturation, fertilization, and embryo quality.

View Article and Find Full Text PDF

Circular RNA WRNIP1 activates the PI3K-AKT and ERK1/2 signaling pathways by binding to miR-129-5p/IGF2 axis and facilitates ovarian follicle development in chickens.

Poult Sci

December 2024

Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.

Article Synopsis
  • The study focuses on the role of a specific circular RNA, WRNIP1 (circWRNIP1), in the development of ovarian follicles in chickens, proposing its importance in egg production.
  • Emerging research highlights how circWRNIP1 promotes the growth of granulosa cells while reducing cell death, indicating its crucial role in selecting and maturing ovarian follicles.
  • The research also uncovers the molecular mechanisms through which circWRNIP1 influences signaling pathways (PI3K-AKT and ERK1/2) via interactions with miR-129-5p and IGF2, which could lead to advancements in breeding strategies.
View Article and Find Full Text PDF

Luteinizing hormone receptor deficiency in immature cumulus-oocyte complexes retrieved for assisted reproduction.

F S Sci

January 2025

Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:

This study investigated whether luteinizing hormone receptor (LHR) expression varies in the granulosa cells of individual follicles according to the maturation stage of the oocytes harvested for assisted reproductive technology (ART) treatment. We observed minimal to no LHR mRNA and protein expression in cumulus cells surrounding oocytes arrested in the germinal vesicle (GV) stage. Interestingly, their ability to mature was confirmed by rescue in vitro maturation, suggesting somatic cell LHR deficiency as a key factor for the retrieval of GV oocytes in ART procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!