Nonalcoholic fatty liver disease (NAFLD) is one of major causes of end-stage liver disease in the coming decades, but it shows few symptoms until it develops into cirrhosis. We aim to develop classification models with machine learning to screen NAFLD patients among general adults. This study included 14,439 adults who took health examination. We developed classification models to classify subjects with or without NAFLD using decision tree, random forest (RF), extreme gradient boosting (XGBoost) and support vector machine (SVM). The classifier with SVM was showed the best performance with the highest accuracy (0.801), positive predictive value (PPV) (0.795), F1 score (0.795), Kappa score (0.508) and area under the precision-recall curve (AUPRC) (0.712), and the second top of area under receiver operating characteristic curve (AUROC) (0.850). The second-best classifier was RF model, which was showed the highest AUROC (0.852) and the second top of accuracy (0.789), PPV (0.782), F1 score (0.782), Kappa score (0.478) and AUPRC (0.708). In conclusion, the classifier with SVM is the best one to screen NAFLD in general population based on the results from physical examination and blood testing, followed by the classifier with RF. Those classifiers have a potential to screen NAFLD in general population for physician and primary care doctors, which could benefit to NAFLD patients from early diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984396PMC
http://dx.doi.org/10.1038/s41598-023-30750-5DOI Listing

Publication Analysis

Top Keywords

liver disease
12
screen nafld
12
machine learning
8
nonalcoholic fatty
8
fatty liver
8
general adults
8
classification models
8
nafld patients
8
classifier svm
8
svm best
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!