We demonstrate experimentally the realization and the characterization of a chip-scale integrated photodetector for the near-infrared spectral regime based on the integration of a MoSe/WS heterojunction on top of a silicon nitride waveguide. This configuration achieves high responsivity of ~1 A W at the wavelength of 780 nm (indicating an internal gain mechanism) while suppressing the dark current to the level of ~50 pA, much lower as compared to a reference sample of just MoSe without WS. We have measured the power spectral density of the dark current to be as low as ~1 × 10 A Hz, from which we extract the noise equivalent power (NEP) to be ~1 × 10 W Hz. To demonstrate the usefulness of the device, we use it for the characterization of the transfer function of a microring resonator that is integrated on the same chip as the photodetector. The ability to integrate local photodetectors on a chip and to operate such devices with high performance at the near-infrared regime is expected to play a critical role in future integrated devices in the field of optical communications, quantum photonics, biochemical sensing, and more.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984525 | PMC |
http://dx.doi.org/10.1038/s41377-023-01088-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!