This study investigated the effect of butanol extract of AS (ASBUE) on atherosclerosis in apolipoprotein E-deficient (ApoE mice. The mice were administered ASBUE (390 or 130 mg/kg/day) or rosuvastatin (RSV) via oral gavage for eight weeks. In ApoE mice, ASBUE suppressed the abnormal body weight gain and improved serum and liver biochemical indicators. ASBUE remarkably reduced the aortic plaque area, improved liver pathological conditions, and lipid metabolism abnormalities, and altered the intestinal microbiota structure in ApoE mice. In the vascular tissue of ASBUE-treated mice, P-IKKβ, P-NFκB, and P-IκBα levels tended to decrease, while IκB-α increased in high fat-diet-fed atherosclerotic mice. These findings demonstrated the anti-atherosclerotic potential of ASBUE, which is mediated by the interaction between the gut microbiota and lipid metabolism and regulated via the Nuclear Factor-kappa B (NF-κB) pathway. This work paves the groundwork for subsequent studies to develop innovative drugs to treat atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202200949DOI Listing

Publication Analysis

Top Keywords

apoe mice
12
butanol extract
8
atherosclerosis apolipoprotein
8
apolipoprotein e-deficient
8
lipid metabolism
8
mice
7
asbue
5
extract acanthopanax
4
acanthopanax senticosus
4
senticosus rupr
4

Similar Publications

APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology.

Mol Neurodegener

January 2025

Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.

Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.

View Article and Find Full Text PDF

Background: Homocysteine (Hcy) and the proprotein convertase subtilisin/kexin type 9 (PCSK9) significantly contribute to atherosclerosis (AS) as well as coronary lesion severity. Our previous work demonstrated that Hcy upregulates PCSK9, accelerating lipid accumulation and AS. A PCSK9 antagonist reduces plasma Hcy levels in ApoE mice.

View Article and Find Full Text PDF

Atherosclerosis, a chronic inflammatory condition characterized by plaque formation, often leads to instability, particularly under Type 2 diabetes mellitus (T2DM) conditions, which exacerbate cardiovascular risks. However, the molecular mechanisms underlying this process remain incompletely understood. In this study, we investigated the correlation between acute coronary syndrome (ACS) and serum levels of Nε-carboxyethyl-lysin (CEL), a prominent advanced glycation end product (AGE) elevated in T2DM, in a cohort of 225 patients with coronary artery disease.

View Article and Find Full Text PDF

Background: Atherosclerosis is a major contributor to global cardiovascular morbidity and mortality, driven by the chronic inflammatory proliferation of vascular smooth muscle cells (VSMCs), which destabilizes atherosclerotic plaques. The EphA2/ephrinA1 signaling pathway plays a critical role in modulating VSMC inflammatory responses, making it an attractive therapeutic target. However, the clinical application of EphA2 inhibitors remains limited due to safety concerns.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.

Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!