A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Overview of the Fundamentals of Data Management, Analysis, and Interpretation in Quantitative Research. | LitMetric

Objectives: To provide an overview of three consecutive stages involved in the processing of quantitative research data (ie, data management, analysis, and interpretation) with the aid of practical examples to foster enhanced understanding.

Data Sources: Published scientific articles, research textbooks, and expert advice were used.

Conclusion: Typically, a considerable amount of numerical research data is collected that require analysis. On entry into a data set, data must be carefully checked for errors and missing values, and then variables must be defined and coded as part of data management. Quantitative data analysis involves the use of statistics. Descriptive statistics help summarize the variables in a data set to show what is typical for a sample. Measures of central tendency (ie, mean, median, mode), measures of spread (standard deviation), and parameter estimation measures (confidence intervals) may be calculated. Inferential statistics aid in testing hypotheses about whether or not a hypothesized effect, relationship, or difference is likely true. Inferential statistical tests produce a value for probability, the P value. The P value informs about whether an effect, relationship, or difference might exist in reality. Crucially, it must be accompanied by a measure of magnitude (effect size) to help interpret how small or large this effect, relationship, or difference is. Effect sizes provide key information for clinical decision-making in health care.

Implications For Nursing Practice: Developing capacity in the management, analysis, and interpretation of quantitative research data can have a multifaceted impact in enhancing nurses' confidence in understanding, evaluating, and applying quantitative evidence in cancer nursing practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.soncn.2023.151398DOI Listing

Publication Analysis

Top Keywords

data management
12
management analysis
12
analysis interpretation
12
quantitative data
12
relationship difference
12
data
10
interpretation quantitative
8
data set
8
nursing practice
8
analysis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!