In this study, we extracted the polysaccharides from Hizikia fusiforme (HFPs) and evaluated their effects on the immune response of the mud crab Scylla paramamosain. Compositional analysis revealed that HFPs were composed mainly of mannuronic acid (49.05%) and fucose (22.29%) as sulfated polysaccharides, and the sugar chain structure was β-type. These results indicated that HFPs have potential antioxidant and immunostimulation activity in vivo or in vitro assays. Through this research, we found that HFPs inhibited viral replication in white spot syndrome virus (WSSV)-infected crabs and promoted phagocytosis of Vibrio alginolyticus by hemocytes. Quantitative PCR results showed that HFPs up-regulated the expression levels of astakine, crustin, myosin, MCM7, STAT, TLR, JAK, CAP, and p53 in crab hemocytes. HFPs also promoted the activities of superoxide dismutase and acid phosphatase and the hemolymph antioxidant activities of crabs. HFPs maintained peroxidase activity after WSSV challenge, thereby providing protection against oxidative damage caused by the virus. HFPs also promoted apoptosis of hemocytes after WSSV infection. In addition, HFPs significantly enhanced the survival rate of WSSV-infected crabs. All results confirmed that HFPs improved the innate immunity of S. paramamosain by enhancing the expression of antimicrobial peptides, antioxidant enzyme activity, phagocytosis, and apoptosis. Therefore, HFPs have potential for use as therapeutic or preventive agents to regulate the innate immunity of mud crabs and protect them against microbial infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2023.108655 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!