A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adverse thyroid hormone and behavioral alterations induced by three frequently used synthetic musk compounds in embryo-larval zebrafish (Danio rerio). | LitMetric

Adverse thyroid hormone and behavioral alterations induced by three frequently used synthetic musk compounds in embryo-larval zebrafish (Danio rerio).

Chemosphere

Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea. Electronic address:

Published: May 2023

Synthetic musk compounds (SMCs) have been extensively used in numerous consumer products, such as perfumes, cosmetics, soap, and fabric softener. Due to their bioaccumulative nature, these compounds have often been detected in the aquatic ecosystem. However, their effects on endocrine and behavioral effects in freshwater fish have rarely been investigated. In the present study, thyroid disruption and neurobehavioral toxicity of SMCs were investigated using embryo-larval zebrafish (Danio rerio). Three frequently used SMCs, i.e., musk ketone (MK), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta [g]- benzopyran (HHCB), and 6-acetyl-1,1,2,4,4,7-hexamethyltetralin (AHTN), were chosen. Experimental concentrations for HHCB and AHTN were selected to include the maximum levels reported in the ambient water. The 5-day exposure to either MK or HHCB led to significant decrease of T4 concentration in the larval fish at the levels as low as 0.13 μg/L, even though compensatory transcriptional changes, e.g., up-regulation of hypothalamic crhβ gene and/or down-regulation of ugt1ab gene, were taken place. In contrast, AHTN exposure resulted in up-regulation of crhβ, nis, ugt1ab, and dio2 genes but did not alter T4 level, suggesting its lesser thyroid disrupting potential. All tested SMCs caused hypoactivity of the larval fish. Several genes related to neurogenesis or development, e.g., mbp and syn2a, were down-regulated, but the patterns of transcriptional changes were different among the tested SMCs. The present observations demonstrate that MK and HHCB can decrease T4 levels and cause hypoactivity of the larval zebrafish. It requires attention that HHCB and AHTN could influence thyroid hormone or behavior of the larval fish even at the levels close to those observed in the ambient environment. Further studies on potential ecological consequences of these SMCs in freshwater environment are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138273DOI Listing

Publication Analysis

Top Keywords

larval fish
12
thyroid hormone
8
three frequently
8
synthetic musk
8
musk compounds
8
embryo-larval zebrafish
8
zebrafish danio
8
danio rerio
8
hhcb ahtn
8
fish levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!