In this study, we investigated the combined effects of temperature and nickel (Ni) contamination on liver mitochondria electron transport system (ETS) enzymes, citrate synthase (CS), phospholipid fatty acid composition and lipid peroxidation in rainbow trout (Oncorhynchus mykiss). Juvenile trout were acclimated for two weeks to two different temperatures (5˚C and 15˚C) and exposed to nickel (Ni; 520 μg/L) for three weeks. Using ratios of ETS enzymes and CS activities, our data suggest that Ni and an elevated temperature acted synergistically to induce a higher capacity for reduction status of the ETS. The response of phospholipid fatty acid profiles to thermal variation was also altered under nickel exposure. In control conditions, the proportion of saturated fatty acids (SFA) was higher at 15˚C than at 5˚C, while the opposite was observed for monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). However, in nickel contaminated fish, the proportion of SFA was higher at 5˚C than at 15˚C, while PUFA and MUFA followed the opposite direction. A higher PUFA ratio is associated with higher vulnerability to lipid peroxidation. Thiobarbituric Acid Reactive Substances (TBARS) content was higher when the PUFA were in higher proportions, except for Ni-exposed, warm-acclimated fish, in which we reported the lowest level of TBARS but the highest proportion of PUFA. We suspect that the interaction of nickel and temperature on lipid peroxidation is due to their synergistic effects on aerobic energy metabolism, as supported by the decrease in the activity of complex IV of the ETS enzyme activity in those fish, or on antioxidant enzymes and pathways. Overall, our study demonstrates that Ni exposure in heat-challenged fish can lead to the remodelling of the mitochondrial phenotype and potentially stimulate alternative antioxidant mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2023.106451 | DOI Listing |
Discov Oncol
January 2025
Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.
Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).
Clin Res Cardiol
January 2025
Department of Cardiology, Medical School Theodor Fontane, University Hospital Ruppin-Brandenburg, Neuruppin, Germany.
Background: Heart failure (HF) is a heterogeneous clinical syndrome affecting a growing global population. Due to the high incidence of cardiovascular risk factors, a large proportion of the Western population is at risk for heart failure. Oxidative stress and inflammation play a crucial role in the pathophysiology of heart failure with preserved ejection fraction (HFpEF).
View Article and Find Full Text PDFJ Membr Biol
January 2025
Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil.
Cancer is a leading cause of death worldwide and its treatment is hampered by the lack of specificity and side effects of current drugs. Cardiotonic steroids (CTS) interact with Na/K-ATPase (NKA) and induce antineoplastic effects, but their narrow therapeutic window is key limiting factor. The synthesis of digitoxigenin derivatives with glycosidic unit modifications is a promising approach to develop more selective and effective antitumor agents.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.
The striped stem borer (Chilo suppressalis, SSB) is a highly destructive insect pest in rice (Oryza sativa). SSB oral secretions (OSs) can induce plant defense responses in rice. However, the specific effectors in SSB OSs that mediate these interactions with rice remain poorly understood.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, TURKEY.
Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!