8-Oxo-7,8-dihydroguanine (oxoG), an abundant DNA lesion, can mispair with adenine and induce mutations. To prevent this, cells possess DNA repair glycosylases that excise either oxoG from oxoG:C pairs (bacterial Fpg, human OGG1) or A from oxoG:A mispairs (bacterial MutY, human MUTYH). Early lesion recognition steps remain murky and may include enforced base pair opening or capture of a spontaneously opened pair. We adapted the CLEANEX-PM NMR protocol to detect DNA imino proton exchange and analyzed the dynamics of oxoG:C, oxoG:A, and their undamaged counterparts in nucleotide contexts with different stacking energy. Even in a poorly stacking context, the oxoG:C pair did not open easier than G:C, arguing against extrahelical base capture by Fpg/OGG1. On the contrary, oxoG opposite A significantly populated the extrahelical state, which may assist recognition by MutY/MUTYH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c11230DOI Listing

Publication Analysis

Top Keywords

dynamics 8-oxoguanine
4
dna
4
8-oxoguanine dna
4
dna decisive
4
decisive effects
4
effects base
4
base pairing
4
pairing nucleotide
4
nucleotide context
4
context 8-oxo-78-dihydroguanine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!