This study involves the in-vitro and in-vivo anti-TB potency and in-vivo safety of Transitmycin (TR) (PubChem CID:90659753)- identified to be a novel secondary metabolite derived from Streptomyces sp (R2). TR was tested in-vitro against drug resistant TB clinical isolates (n = 49). 94% of DR-TB strains (n = 49) were inhibited by TR at 10μg ml-1. In-vivo safety and efficacy studies showed that 0.005mg kg-1 of TR is toxic to mice, rats and guinea pigs, while 0.001mg kg-1 is safe, infection load did not reduce. TR is a potent DNA intercalator and also targets RecA and methionine aminopeptidases of Mycobacterium. Analogue 47 of TR was designed using in-silico based molecule detoxification approaches and SAR analysis. The multiple targeting nature of the TR brightens the chances of the analogues of TR to be a potent TB therapeutic molecule even though the parental compound is toxic. Analog 47 of TR is proposed to have non-DNA intercalating property and lesser in-vivo toxicity with high functional potency. This study attempts to develop a novel anti-TB molecule from microbial sources. Though the parental compound is toxic, its analogs are designed to be safe through in-silico approaches. However, further laboratory validations on this claim need to be carried out before labelling it as a promising anti-TB molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983862PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282454PLOS

Publication Analysis

Top Keywords

in-vivo safety
8
parental compound
8
compound toxic
8
anti-tb molecule
8
in-vivo
5
in-vivo studies
4
studies transitmycin
4
transitmycin potent
4
potent mycobacterium
4
mycobacterium tuberculosis
4

Similar Publications

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Aptamer-Driven Multifunctional Nanoplatform for Near-Infrared Fluorescence Imaging and Rapid Inactivation of .

Anal Chem

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

() is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization . Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an -specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH.

View Article and Find Full Text PDF

We investigated the and uses of pamoic acid functionalized gold nanoparticles (PA@AuNPs), with a focus on determining their safety and potential toxicity in living beings. To test this theory, the bacterial interaction of PA@AuNPs was studied using , , and cultures, as well as the inhibition of the bovine serum albumin (BSA) protein. The real-time polymerase chain reaction (RT-PCR) is used to measure the expression of target genes.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by inflammation in the synovial tissue, driven by aberrant activation of both the innate and adaptive immune systems, which can lead to irreversible disability. Despite the increasing therapeutic approaches for RA, only a low percentage of patients achieve sustained disease remission, and the persistence of immune dysregulation is likely responsible for disease recurrence once remission is attained. Cell therapy is an attractive, wide-spectrum strategy to modulate inflammation, and mesenchymal stromal cells (MSC) derived from perinatal tissues provide valuable tools for their use in regenerative medicine, mainly due to their immunomodulatory properties.

View Article and Find Full Text PDF

Translational research serves as the bridge between basic research and practical applications in clinical settings. The journey from "bench to bedside" is fraught with challenges and complexities such as the often-observed disparity between how compounds behave in a laboratory setting versus in the complex systems of living organisms. The challenge is further compounded by the limited ability of in vitro models to mimic the specific biochemical environment of human tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!