The presence of 25-OH moiety has been proved to enhance the bioactivity of dammarane saponins in many cases. However, such modification by previous strategies had compromised yield and purity of target products. Herein ginsenoside Rf was specifically transformed into 25-OH-(20S)-Rf with a conversion rate of 88.03 % by a Cordyceps Sinensis-mediated biocatalytic system. The formulation of 25-OH-(20S)-Rf was calculated by HRMS, whilst its structure was validated by H-NMR, C-NMR, HSQC, and HMBC analysis. Time-course experiments unveiled straightforward hydration of the double bond on Rf with undetectable side reactions and maximum production of 25-OH-(20S)-Rf on the 6 day, which collectively suggested the suitable timing of harvesting this target compound. In vitro bioassay of (20S)-Rf and 25-OH-(20S)-Rf against lipopolysaccharide-induced macrophages indicated a significant boost of anti-inflammatory effects after the C24-C25 double bond was hydrated. Therefore, the biocatalytic system in this article could be leveraged to deal with macrophage-mediated inflammation under defined circumstances.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202200421DOI Listing

Publication Analysis

Top Keywords

biocatalytic system
12
double bond
8
bioconversion ginsenoside
4
ginsenoside hydrated
4
hydrated derivative
4
derivative elevated
4
elevated anti-inflammatory
4
anti-inflammatory highly
4
highly specific
4
specific biocatalytic
4

Similar Publications

Photomodulated Transient Catalytic Constitutional Dynamic Networks and Reaction Circuits.

Angew Chem Int Ed Engl

January 2025

The Hebrew University of Jerusalem - Givat Ram Campus: Hebrew University of Jerusalem - Edmond J Safra Campus, Institute of Chemistry, Givat Ram, 91904, Jerusalem, ISRAEL.

A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ = 365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network.

View Article and Find Full Text PDF

Thermostability Enhancement of Tagatose 4-Epimerase through Protein Engineering and Whole-Cell Immobilization.

J Agric Food Chem

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China.

d-Tagatose, a rare sugar endowed with a low-calorie property, superior taste quality, and probiotic functionality, has garnered significant research attention. However, the prevailing biological production methods relying on β-galactosidase and l-arabinose isomerase face challenges including high cost and suboptimal conversion efficiency. Consequently, it is of great research significance to find efficient alternative routes for d-tagatose synthesis.

View Article and Find Full Text PDF

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

Background: Biocatalysis offers a potentially greener alternative to chemical processes. For biocatalytic systems requiring cofactor recycling, hydrogen emerges as an attractive reducing agent. Hydrogen is attractive because all the electrons can be fully transferred to the product, and it can be efficiently produced from water using renewable electricity.

View Article and Find Full Text PDF

Pyrazinamide derivatives have been extensively studied for their biological activities, such as anti-tuberculosis activity and antiviral activities. In this work, a continuous-flow system was developed for the synthesis of pyrazinamide derivatives from pyrazine esters and amines (aliphatic amine, benzylamines and morpholine) catalyzed by Lipozyme® TL IM from , which was used for the first time. The reaction parameters including solvent, substrate ratio, reaction temperature and reaction time/flow rate were also studied in detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!