Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we report a general approach to the design of a new generation of small-molecule sensors that produce a zero background but are brightly fluorescent in the near-IR spectral range upon selective interaction with a biomolecular target. We developed a fluorescence turn-on/-off mechanism based on the aggregation/deaggregation of phthalocyanine chromophores. As a proof of concept, we designed, prepared, and characterized sensors for in-cell visualization of epidermal growth factor receptor (EGFR) tyrosine kinase. We established a structure/bioavailability correlation, determined conditions for the optimal sensor uptake and imaging, and demonstrated binding specificity and applications over a wide range of treatment options involving live and fixed cells. The new approach enables high-contrast imaging and requires no in-cell chemical assembly or postexposure manipulations (i.e., washes). The general design principles demonstrated in this work can be extended toward sensors and imaging agents for other biomolecular targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515643 | PMC |
http://dx.doi.org/10.1021/acssensors.2c02342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!