A sample suffers range restriction (RR) when its variance is reduced comparing with its population variance and, in turn, it fails representing such population. If the RR occurs over the latent factor, not directly over the observed variable, the researcher deals with an indirect RR, common when using convenience samples. This work explores how this problem affects different outputs of the factor analysis: multivariate normality (MVN), estimation process, goodness-of-fit, recovery of factor loadings, and reliability. In doing so, a Monte Carlo study was conducted. Data were generated following the linear selective sampling model, simulating tests varying their sample size ( = 200 and 500 cases), test size ( = 6, 12, 18, and 24 items), loading size ( = .50, .70, and .90), and restriction size (from = 1, .90, .80, and so on till .10 selection ratio). Our results systematically suggest that an interaction between decreasing the loading size and increasing the restriction size affects the MVN assessment, obstructs the estimation process, and leads to an underestimation of the factor loadings and reliability. However, most of the MVN tests and most of the fit indices employed were nonsensitive to the RR problem. We provide some recommendations to applied researchers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972127PMC
http://dx.doi.org/10.1177/00131644221081867DOI Listing

Publication Analysis

Top Keywords

loadings reliability
12
range restriction
8
factor analysis
8
estimation process
8
factor loadings
8
loading size
8
restriction size
8
size
6
factor
5
restriction factor
4

Similar Publications

Taking the titanium alloy wing-body connection joint at the rear beam of a certain type of aircraft as the research object, this study analyzed the failure mechanism and verified the structural safety of the wing-body connection joint under actual flight loads. Firstly, this study verified the validity of the loading system and the measuring system in the test system through the pre-test, and the repeatability of the test was analyzed for error to ensure the accuracy of the experimental data. Then, the test piece was subjected to 400,000 random load tests of flight takeoffs and landings, 100,000 Class A load tests, and ground-air-ground load tests, and the test piece fractured under the ground-air-ground load tests.

View Article and Find Full Text PDF

Obtaining reliable dynamic mechanical properties through experiments is essential for developing and validating constitutive models in material selection and structural design. This study introduces a dynamic tensile method using a modified M-type specimen loaded by a split Hopkinson pressure bar (SHPB). A closed M-type specimen was thus employed.

View Article and Find Full Text PDF

Existing support systems for thermal pipeline trenches often fail to meet the specific needs of narrow strips, tight timelines, and short construction periods in urban environments. This study introduces a novel recyclable, non-embedded support system composed of corrugated steel plates, retractable horizontal braces, angle steel, and high-strength bolts designed to address these challenges. The system's effectiveness was validated through prototype testing and optimized using Abaqus finite element simulations.

View Article and Find Full Text PDF

Corrosion in reinforced concrete (RC) structures has led to the increased adoption of non-corrosive materials, such as carbon fiber-reinforced polymers (CFRPs), as replacements for traditional steel rebar. However, ensuring the long-term reliability of CFRP grids under sustained stress is critical for achieving safe and effective designs. This study investigates the long-term tensile creep rupture behavior of CFRP grids to establish a design threshold for their tensile strength under sustained loading conditions in demanding structural applications.

View Article and Find Full Text PDF

The water-lubricated bearing plays a crucial role in the ship propulsion system, significantly impacting vessel safety. However, under the harsh working conditions of low-speed and heavy-load, the lubrication state of water-lubricated bearings is usually poor, leading to serious friction and wear. To improve the tribological performance of composites and reduce friction, three short fibers (ultra-high-molecular-weight polyethylene fibers, basalt fibers, and bamboo fibers) with the same mass fraction (5%) were added into the melted thermoplastic polyurethane (TPU).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!