Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Paroxysmal atrial fibrillation (AF) often eludes early diagnosis, resulting in significant morbidity and mortality. Artificial intelligence (AI) has been used to predict AF from sinus rhythm electrocardiograms (ECGs), but AF prediction using sinus rhythm mobile electrocardiograms (mECG) remains unexplored.
Objective: The purpose of this study was to investigate the utility of AI to predict AF events prospectively and retrospectively using sinus rhythm mECG data.
Methods: We trained a neural network to predict AF events from sinus rhythm mECGs obtained from users of the Alivecor KardiaMobile 6L device. We tested our model on sinus rhythm mECGs within ±0-2 days, ±3-7 days, and ±8-30 days from AF events to determine the optimal screening window. Finally, we tested our model on mECGs from before an AF event to determine whether AF can be predicted prospectively.
Results: We included 73,861 users with 267,614 mECGs (mean age 58.14 years; 35% women). Users with paroxysmal AF contributed 60.15% of mECGs. Model performance on the test set comprising control and study samples across all windows of interest showed an area under the curve (AUC) score of 0.760 (95% confidence interval [CI] 0.759-0.760), sensitivity of 0.703 (95% CI 0.700-0.705), specificity of 0.684 (95% CI 0.678-0.685), and accuracy of 69.4% (95% CI 0.692-0.700). Model performance was better on ±0-2 day samples (sensitivity 0.711; 95% CI 0.709-0.713) and worse on the ±8-30 day window (sensitivity 0.688; 95% CI 0.685-0.690), with performance on the ±3-7 day window falling in between (sensitivity 0.708; 95% CI 0.704-0.710).
Conclusion: Neural networks can predict AF using a widely scalable and cost-effective mobile technology prospectively and retrospectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971999 | PMC |
http://dx.doi.org/10.1016/j.cvdhj.2023.01.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!