The integration of vasculature at physiological scales within 3D cultures of cell-laden hydrogels for the delivery of spatiotemporal mass transport, chemical and mechanical cues, is a stepping-stone towards building tissue models that recapitulate cues. To address this challenge, we present a versatile method to micropattern adjoining hydrogel shells with a perfusable channel or lumen core, for enabling facile integration with fluidic control systems, on one hand, and to cell-laden biomaterial interfaces, on the other hand. This microfluidic imprint lithography methodology utilizes the high tolerance and reversible nature of the bond alignment process to lithographically position multiple layers of imprints within a microfluidic device for sequential filling and patterning of hydrogel lumen structures with single or multiple shells. Through fluidic interfacing of the structures, the ability to deliver physiologically relevant mechanical cues for recapitulating cyclical stretch on the hydrogel shell and shear stress on endothelial cells in the lumen are validated. We envision application of this platform for recapitulation of the bio-functionality and topology of micro-vasculatures, alongside the ability to deliver transport and mechanical cues, as needed for 3D culture to construct tissue models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977322 | PMC |
http://dx.doi.org/10.1016/j.ooc.2022.100017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!