Clathrin-mediated endocytosis (CME) is a process vital to angiogenesis as well as general vascular homeostasis. In pathologies where supraphysiological growth factor signaling underlies disease etiology, such as in diabetic retinopathy and solid tumors, strategies to limit chronic growth factor signaling by way of CME have been shown to have tremendous clinical value. ADP ribosylation factor 6 (Arf6) is a small GTPase that promotes the assembly of actin necessary for CME. In its absence, growth factor signaling is greatly diminished, which has been shown to ameliorate pathological signaling input in diseased vasculature. However, it is less clear if there are bystander effects related to loss of Arf6 on angiogenic behaviors. Our goal was to provide a analysis of Arf6’s function in angiogenic endothelium, focusing on its role in lumenogenesis as well as its relation to actin and CME. We found that Arf6 localized to both filamentous actin and sites of CME in 2-dimensional culture. Loss of Arf6 distorted both apicobasal polarity and reduced the total cellular filamentous actin content, and this may be the primary driver underlying gross dysmorphogenesis during angiogenic sprouting in its absence. Our findings highlight that endothelial Arf6 is a potent mediator of both actin regulation and CME.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980066PMC
http://dx.doi.org/10.1101/2023.02.22.529543DOI Listing

Publication Analysis

Top Keywords

filamentous actin
12
growth factor
12
factor signaling
12
actin cme
8
loss arf6
8
arf6
6
actin
6
cme
6
arf6 regulates
4
regulates endocytosis
4

Similar Publications

Mitochondria- and ER-associated actin are required for mitochondrial fusion.

Nat Commun

January 2025

Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.

Mitochondria are crucial for cellular metabolism and signalling. Mitochondrial activity is modulated by mitochondrial fission and fusion, which are required to properly balance metabolic functions, transfer material between mitochondria, and remove defective mitochondria. Mitochondrial fission occurs at mitochondria-endoplasmic reticulum (ER) contact sites, and requires the formation of actin filaments that drive mitochondrial constriction and the recruitment of the fission protein DRP1.

View Article and Find Full Text PDF

A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2.

View Article and Find Full Text PDF

Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.

View Article and Find Full Text PDF

Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock.

Genes (Basel)

December 2024

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan.

Background/objectives: Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, the effect of heat shock on nuclear actin dynamics, particularly in the nucleolus, remains unclear. This study aims to elucidate the contribution of nucleolar actin to cellular responses under heat shock conditions.

View Article and Find Full Text PDF

Amoebozoa is a group of single-celled organisms that change their shape during locomotion. However, there is a taxon-specific complex of morphological characters inherent in the moving amoebae, known as locomotive forms. Actin is one of the proteins most important for amoeboid movement that, together with actin-binding proteins, construct the architecture of the cytoskeleton in the amoeboid cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!