Background: Per- and polyfluoroalkyl substances (PFAS) are a growing class of manufactured chemical compounds found in a variety of consumer products. PFAS have become ubiquitous in the environment and were found in many humans sampled in the United States (U.S.). Yet, significant gaps in understanding statewide level exposures to PFAS remain.
Objective: The goals of this study are to establish a baseline of exposure at the state level by measuring PFAS serum levels among a representative sample of Wisconsin residents and compare to United States National Health and Nutrition Examination Survey (NHANES).
Methods: The study sample included 605 adults (18+ years of age) selected from the 2014-2016 sample of the Survey of the Health of Wisconsin (SHOW). Thirty-eight PFAS serum concentrations were measured using high-pressure liquid chromatography coupled with tandem mass spectrometric detection (HPLC-MS/MS) and geometric means presented. Weighted geometric mean serum values of eight PFAS analytes from SHOW were compared to U.S. national levels from the NHANES 2015-2016 sample (PFOS, PFOA, PFNA, PFHxS, PFHpS, PFDA, PFUnDA), and the 2017-2018 sample for Me-PFOSA, PFHPS using the Wilcoxon rank-sum test.
Results: Over 96% of SHOW participants had positive results for PFOS, PFHxS, PFHpS, PFDA, PFNA, and PFOA. In general, SHOW participants had lower serum levels across all PFAS when compared to NHANES. Serum levels increased with age and were higher among males and whites. These trends were seen in NHANES, except non-whites had higher PFAS levels at higher percentiles.
Significance: Wisconsin residents may have a lower overall body burden of some PFAS compounds compared to those seen by a nationally representative sample. Additional testing and characterization may be needed in Wisconsin, particularly among non-whites and low socioeconomic status, for which the SHOW sample had less representation compared to NHANES.
Impact Statement: The present study conducts biomonitoring of 38 PFAS in the state of Wisconsin and suggests that while most residents of Wisconsin have detectable levels of PFAS in their blood serum, they may have a lower body burden of some PFAS compared to a nationally representative sample. Older adults, males, and whites may have a higher body burden of PFAS relative to other groups both in Wisconsin and the wider United States.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980248 | PMC |
http://dx.doi.org/10.1101/2023.02.14.23285850 | DOI Listing |
Environ Health
January 2025
Academic Center for General Practice, KU Leuven, Kapucijnenvoer 7 bus 7001 block h, Leuven, 3000, Belgium.
Background: The detection of a local per- and polyfluoroalkyl substances (PFAS) pollution hotspot in Zwijndrecht (Belgium) necessitated immediate action to address health concerns of the local community. Several human biomonitoring (HBM) studies were initiated, gathering cross-sectional exposure data from more than 10,000 participants. The linkage of these HBM data with primary care health registries might be a useful new tool in environmental health analysis.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China. Electronic address:
Differentiated thyroid cancer (DTC) generally has a favorable prognosis, and radioactive iodine (RAI) therapy is typically used for metastatic DTC that continues to progress and poses life-threatening risks. However, resistance to RAI in metastatic DTC significantly impairs treatment effectiveness. This study aims to identify potential compounds that may influence RAI efficacy.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:
Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:
In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!