Unlabelled: The extracellular biofilm matrix includes an exopolysaccharide that is critical for the architecture and function of the community. To date, our understanding of the biosynthetic machinery and the molecular composition of the exopolysaccharide of remains unclear and incomplete. This report presents synergistic biochemical and genetic studies built from a foundation of comparative sequence analyses targeted at elucidating the activities of the first two membrane-committed steps in the exopolysaccharide biosynthetic pathway. By taking this approach, we determined the nucleotide sugar donor and lipid-linked acceptor substrates for the first two enzymes in the biofilm exopolysaccharide biosynthetic pathway. EpsL catalyzes the first phosphoglycosyl transferase step using UDP-di- -acetyl bacillosamine as phospho-sugar donor. EpsD is a GT-B fold glycosyl transferase that facilitates the second step in the pathway that utilizes the product of EpsL as an acceptor substrate and UDP- -acetyl glucosamine as the sugar donor. Thus, the study defines the first two monosaccharides at the reducing end of the growing exopolysaccharide unit. In doing so we provide the first evidence of the presence of bacillosamine in an exopolysaccharide synthesized by a Gram-positive bacterium.
Importance: Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here we identify the first two essential steps in the biofilm matrix exopolysaccharide synthesis pathway. Together our studies and approaches provide the foundation for the sequential characterization of the steps in exopolysaccharide biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenol diphosphate-linked glycan substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980142 | PMC |
http://dx.doi.org/10.1101/2023.02.22.529487 | DOI Listing |
Appl Environ Microbiol
January 2025
Postgraduate Program in Animal Science in the Tropics - Federal University of Bahia, Salvador, Bahia, Brazil.
Leptospirosis is a zoonotic disease caused by bacteria, affecting humans and a broad range of wild and domestic animals in diverse epidemiological settings (rural, urban, and wild). The disease's pathogenesis and epidemiology are complex networks not fully elucidated. Epidemiology reflects the One Health integrated approach of environment-animal-human interaction, causing severe illness in humans and animals, with consequent public health burdens.
View Article and Find Full Text PDFChemosphere
January 2025
University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:
The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
Chronic infections represent a significant global health and economic challenge. Biofilms, which are bacterial communities encased in an extracellular polysaccharide matrix, contribute to approximately 80% of these infections. In particular, pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from the sputum of patients with cystic fibrosis and are commonly found in chronic wound infections.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Pittsburgh School of Medicine, Structural Biology, 3501 5th Ave., Biomedical Science Tower 3, Room 2044, 15261, Pittsburgh, UNITED STATES OF AMERICA.
Bacterial biofilms are major contributors to persistent infections and antimicrobial resistance, posing significant challenges to treatment. However, obtaining high-resolution structural information on native bacterial biofilms has remained elusive due to the methodological limitations associated with analyzing complex biological samples. Solid-state NMR (ssNMR) has shown promise in this regard, but its conventional application is hindered by sensitivity constraints for unlabeled native samples .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!