Malfunctions in the immune system cause multiple sclerosis (MS), which initiates mild to severe nerve damage. MS will disturb the signal communication between the brain and other body parts, and early diagnosis will help reduce the harshness of MS in humankind. Magnetic resonance imaging (MRI) supported MS detection is a standard clinical procedure in which the bio-image recorded with a chosen modality is considered to assess the severity of the disease. The proposed research aims to implement a convolutional neural network (CNN) supported scheme to detect MS lesions in the chosen brain MRI slices. The stages of this framework include (i) image collection and resizing, (ii) deep feature mining, (iii) hand-crafted feature mining, (iii) feature optimization with firefly algorithm, and (iv) serial feature integration and classification. In this work, five-fold cross-validation is executed, and the final result is considered for the assessment. The brain MRI slices with/without the skull section are examined separately, presenting the attained results. The experimental outcome of this study confirms that the VGG16 with random forest (RF) classifier offered a classification accuracy of >98% MRI with skull, and VGG16 with K-nearest neighbor (KNN) provided an accuracy of >98% without the skull.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974276 | PMC |
http://dx.doi.org/10.1155/2023/4776770 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!