Larval habitat stability and productivity in two sites in Southern Ghana.

Malar J

Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana.

Published: March 2023

Background: Mosquito larval source management (LSM) is a valuable additional tool for malaria vector control. Understanding the characteristics of mosquito larval habitats and its ecology in different land use types can give valuable insight for an effective larval control strategy. This study determined the stability and productivity of potential anopheline larval habitats in two different ecological sites: Anyakpor and Dodowa in southern Ghana.

Methods: A total of 59 aquatic habitats positive for anopheline larvae were identified, and sampled every two weeks for a period of 30 weeks using a standard dipping method. Larvae were collected using standard dippers and were raised in the insectary for identification. Sibling species of the Anopheles gambiae sensu lato (s.l.) were further identified by polymerase chain reaction. The presence of larval habitats, their stability and larvae positive habitats were compared between the two sites using Mann-Whitney U and the Kruskal-Wallis test. Factors affecting the presence of An. gambiae larvae and physicochemical properties at the sites were determined using multiple logistic regression analysis and Spearman's correlation.

Results: Out of a total of 13,681 mosquito immatures collected, 22.6% (3095) were anophelines and 77.38% (10,586) were culicines. Out of the 3095 anophelines collected, An. gambiae s.l. was predominant (99.48%, n = 3079), followed by Anopheles rufipes (0.45%, n = 14), and Anopheles pharoensis (0.064%, n = 2). Sibling species of the An. gambiae consisted of Anopheles coluzzii (71%), followed by An. gambiae s.s. (23%), and Anopheles melas (6%). Anopheles mean larval density was highest in wells [6.44 (95% CI 5.0-8.31) larvae/dip], lowest in furrows [4.18 (95% CI 2.75-6.36) larvae/dip] and man-made ponds [1.20 (95% CI 0.671-2.131) larvae/dip].The results also revealed habitat stability was highly dependent on rainfall intensity, and Anopheles larval densities were also dependent on elevated levels of pH, conductivity and TDS.

Conclusion: The presence of larvae in the habitats was dependent on rainfall intensity and proximity to human settlements. To optimize the vector control measures of malaria interventions in southern Ghana, larval control should be focused on larval habitats that are fed by underground water, as these are more productive habitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983185PMC
http://dx.doi.org/10.1186/s12936-023-04498-2DOI Listing

Publication Analysis

Top Keywords

larval habitats
16
larval
10
habitat stability
8
stability productivity
8
southern ghana
8
mosquito larval
8
vector control
8
habitats
8
larval control
8
sibling species
8

Similar Publications

The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded.

View Article and Find Full Text PDF

The black soldier fly (Hermetia illucens) is a saprophagous insect known for bioconverting organic waste, potentially offering environmental benefits, such as contributing to waste reduction and nutrient cycling. The performance of larvae varies significantly with factors substrate moisture, larval density, and scale of production. Three experiments were conducted using a mix of spent mushroom substrate (SMS) and chicken feed (CF).

View Article and Find Full Text PDF

Click beetle larvae from Cretaceous Burmese amber represent an ancient Gondwanan lineage.

Sci Rep

January 2025

Department of Geoinformatics, Faculty of Science, Palacky University, 17. listopadu 50, 77146, Olomouc, Czech Republic.

The click beetles (Elateridae) represent the major and well-known group of the polyphagan superfamily Elateroidea. Despite a relatively rich fossil record of Mesozoic Elateridae, only a few species are described from the Upper Cretaceous Burmese amber. Although Elateridae spend most of their lives as larvae, our knowledge on immature stages of this family is limited, which is especially valid for the fossils.

View Article and Find Full Text PDF

Determination of Larval Instars of (Coleoptera: Bothrideridae) Using Head Capsule Width Frequency Distribution.

Insects

December 2024

Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio Disaster, College of Forestry, Northwest A&F University, Yangling 712100, China.

Long-horned beetles are among the major insect pests that can cause significant economic and ecological damage globally. The control of long-horned beetles is crucial to sustain the forest ecosystem. , an economically important ectoparasitoid of long-horned beetles, is widely utilized in biological control strategies.

View Article and Find Full Text PDF

While adult fireflies are terrestrial, their larvae inhabit various habitat types, and a lack of comprehensive research on the feeding habits of these larvae across different habitats has greatly impeded the development of artificial diets. Here, we tested 14 types of foods, primarily covering gastropods, vertebrates, and fruit, to survey feed for aquatic ( and ), semi-aquatic ( and sp.), and terrestrial () fireflies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!