Plant polyphenols have poor water solubility, resulting in low bioavailability. In order to overcome this limitation, the drug molecules can be coated with multiple layers of polymeric materials. Microcrystals of quercetin and resveratrol coated with a (PAH/PSS) or (CH/DexS) shell were prepared using the layer-by-layer assembly method; cultured human HaCaT keratinocytes were treated with UV-C, and after that, cells were incubated with native and particulate polyphenols. DNA damage, cell viability, and integrity were evaluated by comet assay, using PrestoBlueTM reagent and lactate dehydrogenase (LDH) leakage test. The data obtained indicate that both native and particulate polyphenols added immediately after UV-C exposure increased cell viability in a dose-dependent manner; however, the efficiency of particulate quercetin was more pronounced than that of the native compound; also quercetin coated with a (CH/DexS) shell more effectively than the native compound reduced the number of DNA lesions in the nuclei of keratinocytes exposed to UV-C radiation; native and particulate resveratrol were ineffective against DNA damage. Quercetin reduces cell death caused by UV-C radiation and increases DNA repair capacity. Coating quercetin with (CH/DexS) shell markedly enhanced its impact on DNA repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-023-02443-3 | DOI Listing |
J Environ Manage
January 2025
Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil. Electronic address:
Waste pile substrates from Fe mining may carry potentially toxic elements (PTE). Rehabilitation efforts must maintain soil vegetation cover effectively, avoiding the dispersion of particulate matter and reducing the risk to the environment and human health. Therefore, this study aims to evaluate the pseudo-total and extractable contents, perform chemical fractionation, and assess the bioaccessibility and risk of PTE in waste piles of Fe mining in the Eastern Amazon.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208.
Methane- and ammonia-oxidizing bacteria play key roles in the global carbon and nitrogen cycles, respectively. These bacteria use homologous copper membrane monooxygenases to accomplish the defining chemical transformations of their metabolisms: the oxidations of methane to methanol by particulate methane monooxygenase (pMMO) and ammonia to hydroxylamine by ammonia monooxygenase (AMO), enzymes of prime interest for applications in mitigating climate change. However, investigations of these enzymes have been hindered by the need for disruptive detergent solubilization prior to structure determination, confounding studies of pMMO and precluding studies of AMO.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Sustainable Land Management & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK.
Monitoring heavy metals in vegetation near mining or industrial sites is crucial for detecting plant contamination; requiring discrimination between metals adhered to foliar surfaces from the internal concentrations. We investigated key factors that might contribute to lead (Pb) accumulation in leaves of local vegetation near a Pb mine: (i) distance from the pollutant source, (ii) morphological characteristics of leaf surfaces, (iii) their susceptibility to Pb loss by washing, and (iv) the effect of contrasting washing reagents in Pb removal. Native plant species were sampled at three field locations, possessing different leaf surface morphologies: glabrous (smooth), resinous (waxy) and hirsute (hairy).
View Article and Find Full Text PDFJAMA Netw Open
December 2024
School of Environment, Society and Sustainability, University of Utah, Salt Lake City.
Lancet
November 2024
Institute for Global Health, University College London, London, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!