Daphnia magna is an important organism in ecotoxicity studies because it is sensitive to toxic substances and easy to culture in laboratory conditions. Its locomotory responses as a biomarker are highlighted in many studies. Over the last several years, multiple high-throughput video tracking systems have been developed to measure the locomotory responses of Daphnia magna. These high-throughput systems, used for high-speed analysis of multiple organisms, are essential for efficiently testing ecotoxicity. However, existing systems are lacking in speed and accuracy. Specifically, speed is affected in the biomarker detection stage. This study aimed to develop a faster and better high-throughput video tracking system using machine learning methods. The video tracking system consisted of a constant temperature module, natural pseudo-light, multi-flow cell, and an imaging camera for recording videos. To measure Daphnia magna movements, we developed a tracking algorithm for automatic background subtraction using k-means clustering, Daphnia classification using machine learning methods (random forest and support vector machine), and tracking each Daphnia magna location using the simple online real-time tracking algorithm. The proposed tracking system with random forest performed the best in terms of identification (ID) precision, ID recall, ID F1 measure, and ID switches, with scores of 79.64%, 80.63%, 78.73%, and 16, respectively. Moreover, it was faster than existing tracking systems such as Lolitrack and Ctrax. We conducted an experiment to observe the impact of toxicants on behavioral responses. Toxicity was measured manually in the laboratory and automatically using the high-throughput video tracking system. The median effective concentration of Potassium dichromate measured in the laboratory and using the device was 1.519 and 1.414, respectively. Both measurements conformed to the guideline provided by the Environmental Protection Agency of the United States; therefore, our method can be used for water quality monitoring. Finally, we observed Daphnia magna behavioral responses in different concentrations after 0, 12, 18, and 24 h and found that there was a difference in movement according to the concentration at all hours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981574PMC
http://dx.doi.org/10.1038/s41598-023-27554-yDOI Listing

Publication Analysis

Top Keywords

daphnia magna
24
video tracking
20
tracking system
20
high-throughput video
16
locomotory responses
12
tracking
10
responses daphnia
8
tracking systems
8
machine learning
8
learning methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!