Despite many studies in humans and mice using genome transfer (GT), there are few reports using this technique in oocytes of wild or domestic animals. Therefore, we aimed to establish a GT technique in bovine oocytes using the metaphase plate (MP) and polar body (PB) as the sources of genetic material. In the first experiment, GT was established using MP (GT-MP), and a sperm concentration of 1 × 10 or 0.5 × 10 spermatozoa/ml gave similar fertilization rates. The cleavage rate (50%) and blastocyst rate (13.6%) in the GT-MP group was lower than that of the in vitro production control group (80.2% and 32.6%, respectively). The second experiment evaluated the same parameters using PB instead of MP; the GT-PB group had lower fertilization (82.3% vs. 96.2%) and blastocyst (7.7% vs. 36.8%) rates than the control group. No differences in the amount of mitochondrial DNA (mtDNA) were observed between groups. Finally, GT-MP was performed using vitrified oocytes (GT-MPV) as a source of genetic material. The cleavage rate of the GT-MPV group (68.4%) was similar to that of the vitrified oocytes (VIT) control group (70.0%) and to that of the control IVP group (81.25%, P < 0.05). The blastocyst rate of GT-MPV (15.7) did not differ neither from the VIT control group (5.0%) nor from the IVP control group (35.7%). The results suggested that the structures reconstructed by the GT-MPV and GT-PB technique develop in embryos even if vitrified oocytes are used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224876PMC
http://dx.doi.org/10.1007/s10815-023-02758-3DOI Listing

Publication Analysis

Top Keywords

control group
20
vitrified oocytes
12
group
9
genome transfer
8
technique bovine
8
metaphase plate
8
plate polar
8
polar body
8
genetic material
8
cleavage rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!