The joint analysis of the genome, epigenome, transcriptome, proteome and/or metabolome from single cells is transforming our understanding of cell biology in health and disease. In less than a decade, the field has seen tremendous technological revolutions that enable crucial new insights into the interplay between intracellular and intercellular molecular mechanisms that govern development, physiology and pathogenesis. In this Review, we highlight advances in the fast-developing field of single-cell and spatial multi-omics technologies (also known as multimodal omics approaches), and the computational strategies needed to integrate information across these molecular layers. We demonstrate their impact on fundamental cell biology and translational research, discuss current challenges and provide an outlook to the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979144 | PMC |
http://dx.doi.org/10.1038/s41576-023-00580-2 | DOI Listing |
Environ Int
January 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China. Electronic address:
Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
Serum uric acid is an end-product of purine metabolism. Uric acid concentrations in excess of the physiological range may lead to diseases such as gout, cardiovascular disease, and kidney injury. The kidney includes a variety of cell types with specialized functions such as fluid and electrolyte homeostasis, detoxification, and endocrine functions.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.
Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
The spatial organization of the genome plays a critical role in regulating gene expression, cellular differentiation, and genome stability. This review provides an in-depth examination of the methodologies, computational tools, and frameworks developed to map the three-dimensional (3D) architecture of the genome, focusing on both ligation-based and ligation-free techniques. We also explore the limitations of these methods, including biases introduced by restriction enzyme digestion and ligation inefficiencies, and compare them to more recent ligation-free approaches such as Genome Architecture Mapping (GAM) and Split-Pool Recognition of Interactions by Tag Extension (SPRITE).
View Article and Find Full Text PDFNat Methods
January 2025
Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Spatial molecular profiling has provided biomedical researchers valuable opportunities to better understand the relationship between cellular localization and tissue function. Effectively modeling multimodal spatial omics data is crucial for understanding tissue complexity and underlying biology. Furthermore, improvements in spatial resolution have led to the advent of technologies that can generate spatial molecular data with subcellular resolution, requiring the development of computationally efficient methods that can handle the resulting large-scale datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!