USP35 promotes cell proliferation and chemotherapeutic resistance through stabilizing FUCA1 in colorectal cancer.

Oncogenesis

Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.

Published: March 2023

Ubiquitin-specific-processing proteases 35 (USP35) is an under-characterized deubiquitinase and its role in colorectal cancer (CRC) remains unclear. Here, we focus on delineating the impact of USP35 on CRC cell proliferation and chemo-resistance, as well as the possible regulatory mechanism. By examining the genomic database and clinical samples, we found that USP35 was overexpressed in CRC. Further functional studies showed that enhanced USP35 expression promoted CRC cell proliferation and resistance to oxaliplatin (OXA) and 5-fluorouracil (5-FU), whereas USP35 depletion impeded cell proliferation and sensitized cells to OXA and 5-FU treatments. Then, to explore the possible mechanism underlying USP35-triggered cellular responses, we performed co-immunoprecipitation (co-IP) followed by mass spectrometry (MS) analysis and identified α-L-fucosidase 1 (FUCA1) as a direct deubiquitiation target of USP35. Importantly, we demonstrated that FUCA1 was an essential mediator for USP35-induced cell proliferation and chemo-resistance in vitro and in vivo. Finally, we observed that nucleotide excision repair (NER) components (e.g., XPC, XPA, ERCC1) were up-regulated by USP35-FUCA1 axis, indicating a potential mechanism for USP35-FUCA1-mediated platinum resistance in CRC. Together, our results for the first time explored the role and important mechanism of USP35 in CRC cell proliferation and chemotherapeutic response, providing a rationale for USP35-FUCA1-targeted therapy in CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981583PMC
http://dx.doi.org/10.1038/s41389-023-00458-2DOI Listing

Publication Analysis

Top Keywords

cell proliferation
24
crc cell
12
usp35
8
proliferation chemotherapeutic
8
colorectal cancer
8
usp35 crc
8
proliferation chemo-resistance
8
crc
7
cell
6
proliferation
6

Similar Publications

Mechanisms and new advances in the efficacy of plant active ingredients in tendon-bone healing.

J Orthop Surg Res

January 2025

The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.

The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.

View Article and Find Full Text PDF

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!