Three-dimensional single particle tracking using 4π self-interference of temporally phase-shifted fluorescence.

Light Sci Appl

Biomedical Engineering Department, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be'er-Sheva, 84105, Israel.

Published: March 2023

Single particle tracking in three dimensions is an indispensable tool for studying dynamic processes in various disciplines, including material sciences, physics, and biology, but often shows anisotropic three-dimensional spatial localization precision, which restricts the tracking precision, and/or a limited number of particles that can be tracked simultaneously over extended volumes. Here we developed an interferometric, three-dimensional fluorescence single particle tracking method based on conventional widefield excitation and temporal phase-shift interference of the emitted, high-aperture-angle, fluorescence wavefronts in a greatly simplified, free-running, triangle interferometer that enables tracking of multiple particles at the same time with <10-nm spatial localization precision in all three dimensions over extended volumes (~35 × 35 × 2 μm) at video rate (25 Hz). We applied our method to characterize the microenvironment of living cells and up to ~40 μm deep in soft materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981587PMC
http://dx.doi.org/10.1038/s41377-023-01085-7DOI Listing

Publication Analysis

Top Keywords

single particle
12
particle tracking
12
fluorescence single
8
tracking
5
three-dimensional single
4
tracking 4π
4
4π self-interference
4
self-interference temporally
4
temporally phase-shifted
4
phase-shifted fluorescence
4

Similar Publications

Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.

View Article and Find Full Text PDF

Background And Purpose: In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used to convert proton dose into an equivalent photon dose. However, RBE varies with tissue type, fraction dose, and beam quality parameters beyond dose such as linear energy transfer (LET) raising concerns about increased local effectiveness and potential toxicity.

View Article and Find Full Text PDF

Background: Prior studies have established correlations between gut microbiota (GM) dysbiosis, circulating metabolite alterations, and gastric cancer (GC) risk. However, the causal nature of these associations remains uncertain.

Methods: We utilized summary data from genome-wide association studies (GWAS) on GM (European, n=8,956), blood metabolites (European, n=120,241; East Asian, n=4,435), and GC (European, n=476,116; East Asian, n=167,122) to perform a bidirectional Mendelian randomization (MR) analysis, investigating the causal effects of GM and metabolites on GC risk.

View Article and Find Full Text PDF

Photosensitizable ZIF-8 BioMOF for Stimuli-Responsive Antimicrobial Phototherapy.

Mol Pharm

January 2025

Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India.

Resistant pathogens are increasingly posing a heightened risk to healthcare systems, leading to a growing concern due to the lack of effective antimicrobial treatments. This has prompted the adoption of antimicrobial photodynamic therapy (aPDT), which eradicates microorganisms by generating reactive oxygen species (ROS) through the utilization of a photosensitizer, photons, and molecular oxygen. However, a challenge arises from the inherent characteristics of photosensitizers, including photobleaching, aggregation, and self-quenching.

View Article and Find Full Text PDF

Pinch-off dynamics of emulsion filaments before and after polymerization of the internal phase.

Soft Matter

January 2025

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.

The capillary break-up of complex fluid filaments occurs in many scientific and industrial applications, particularly in bio-printing where both liquid and polymerized droplets exist in the fluid. The simultaneous presence of fluid and solid particles within a carrier fluid and their interactions lead to deviations in the filament break-up from the well-established capillary breakup dynamics of single-phase liquids. To examine the significance of the dispersed phase and the internal interactions between liquid droplets and solid particles, we prepare emulsions through photopolymerization and conduct experimental investigations into the pinch-off dynamics of fluid filaments, focusing on the impact of varying concentrations of liquid droplets (before polymerization) and polymerized droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!